Skip to main content
Log in

Neue morphologische Grundlagen zur Physiologie des Riechens und Schmeckens

New morphological results for the physiology of smell and taste

  • I. Teil: Referate
  • Published:
Archives of oto-rhino-laryngology Aims and scope Submit manuscript

Summary

New results as revealed by scanning and transmission electron microscopy have given us further knowledge about the structure of the olfactory region of vertebrates. With comparative studies we are now able to discuss the functional relationship of this region. In all vertebrates the olfactory cell is a primary sensory cell. The apical segment of the olfactory cell with its olfactory vesicle is involved in the formation of the olfactory border. As a rule the receptor possesses cilia or cilia-like processes. These are absent in the olfactory receptor of the shark, the microvillus receptor of the fish and the olfactory cell of Jabonsons organ of amphibians, reptiles and mammals. The odorous substances in the fish are brought to the receptor membrane by the water flow. In air breathing vertebrates a terminal film is present. This film is a product of secretion from the Bowmans glands. Gasous odorous substances must first be dissolved in the terminal film and penetrate it before reaching the receptor membrane.

The cilia-like olfactory process of the fish in the proximal segment is not essentially different from the kinocilia of the supporting cell, except that they are shorter. In contrast the olfactory cell of air-breathing vertebrates form cilia-like processes with a short cilia-like proximal segment and a long and very thin distal end piece. In the amphibians and sauropsidians the end pieces can have a lenght of up to 150 μ and up to 80 μ in mammals. The olfactory vesicles with its processes undergo continuous regeneration.

The olfactory epithelium of man show the same structural formation as observed in other mammals. Regressive changes in the adult can lead to a reduction in the number of sensory cells and also to a flattening of the epithelium. Morphological criteria for regenerative processes in the sensory cell structures are present.

A specialized olfactory cell type has been found in some teleosts. This cell is characterized by a small pit below the olfactory border in which the cilia of the olfactory cell are redrawn. There is some evidence that this olfactory cell type may be compared with the olfactory cells in the parafollicular tubes of lamprey.

The so called rod-shaped receptor in the olfactory mucosa of fishes has no axon and is therefore no olfactory cell. The same kind of cell is also present in the olfactory mucosa of airbreathing animals. We classify this cell as brush cell.

Comparative electron microscopic studies reveal identical ultrastructural organization of the olfactory bulb in all classes of vertebrates, including cyclostomes and man. The size and structure of synapses in the olfactory bulb are specific for each connection type. The dark endings of the olfactory receptor cells have small axo-dendritic contacts to the bright mitral or tufted cell processes within the glomeruli. Granule cells, periglomerular cells and mitral cells interact by dendro-dendritic, dendro-axonic and somato-dendritic synaptic complexes which often have “reciprocal” arrangements. Presynaptic endings on the granule cell dendrites and somata contain a large number of small synaptic vesicles and have membrane complexes more than 0.5 μm in diameter. In the periventricular or central zone of the olfactory bulb excitatory synapses with interdigitation between the pre- and postsynaptic processes are present. We are able to give schematic representations of postulated nerve circuits with the aid of the different morphological appearances of the different synapses.

The cellular composition of the taste buds of different mammals can be described from electron microscopical studies. As a rule 5 cell types which regenerate through mitosis from the basal or marginal cells can be differentiated. Only the active sensory cell forms synaptic membrane complexes. It sends rod-shaped processes into the taste pores. Growing and dying sensory cells do not possess these processes. The supporting cells surround the single sensory cell. The apical pole of the supporting cell enters the taste pore by a bundle of microvilli. Secretory granules accumulate in the apical part of the supporting cell and empty their contents into the taste pore. The terminal processes of the myelinated afferent nerve fibres form a plexus in the lamina propria and penetrate the taste bud with numerous itraepithelial branchings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Allison, A. C., Warwick, R. T.: Quantitative observations on the olfactory system of the rabbit. Brain 72, 186–197 (1949)

    Google Scholar 

  • Altner, H., Müller, W.: Elektrophysiologische und elektronenmikroskopische Untersuchungen an der Riechschleimhaut des Jacobson'schen Organs von Eidechsen (Lacerta). Z. vergl. Physiol. 60, 151–155 (1968)

    Google Scholar 

  • Andres, K. H.: Der Feinbau des Bulbus olfactorius der Ratte unter besonderer Berücksichtiggung der synaptischen Verbindungen. Z. Zellforsch. 65, 530–561 (1965)

    Google Scholar 

  • Andres, K. H.: Der Feinbau der Regio olfactoria von Makrosmatikern. Z. Zellforsch. 69, 140–154 (1966)

    Google Scholar 

  • Andres, K. H.: Der olfactorische Saum der Katze. Z. Zellforsch. 95, 250–274 (1969)

    Google Scholar 

  • Andres, K. H.: Anatomy and ultrastructure of the olfactory bulb in fish, amphibia, reptiles, birds and mammals. Ciba Foundation Symp. on “Taste and Smell in Vertebrates”, G. W. W. Wolstenholme and J. Knight, eds., pp. 177–196 London: Churchill 1970

    Google Scholar 

  • Andres, K. H., v. Düring, M.: Interferenzphänomene am osmierten Präparat für die systematische elektronenmikroskopische Untersuchung. Mikroskopie 30, 139–149 (1974)

    Google Scholar 

  • Bannister, L. H.: The fine structure of the olfactory surface of teleostean fishes. Quart. J. micr. Sci. 106, 333–342 (1965)

    Google Scholar 

  • Baumgarten, R. von, Green, J. D., Mancia, M.: Slow waves in the olfactory bulb and their relation to unitary discharges. Electroenceph. clin. Neurophysiol. 14, 621–634 (1962)

    Google Scholar 

  • Beidler, L. M., Smallman, R. L.: Renewal of cells within taste buds. J. Cell. Biol. 27, 263–272 (1965)

    Google Scholar 

  • Drenckhahn, D.: Untersuchungen an Regio olfactoria und Nervus olfactorius der Silbermöve (Larus argentatus). Z. Zellforsch. 106, 119–142 (1970)

    Google Scholar 

  • Graziadei, P., Tucker, D.: Vomeronasal receptors in turtles. Z. Zellforsch. 105, 498–514 (1970)

    Google Scholar 

  • Hirata, Y.: Some observations on the fine structure of the synapses in the olfactory bulb of the mouse with particular reference to the atypical synaptic configuration. Arch. Histol. Jap. 24, 293–302 (1964)

    Google Scholar 

  • Kolmer, W.: Geruchsorgan. In: Handbuch der mikroskopischen Anatomie des Menschen, Vol. 3, pp. 192–249. Berlin: Springer 1927

    Google Scholar 

  • Kolnberger, I., Altner, H.: Ciliary-structures precursor bodies as stable constituents in the sensory cells of the vomeronasal organ of reptiles and mammals. Z. Zellforsch. 118, 254–262 (1971)

    Google Scholar 

  • Lohman, A. H. M.: The anterior olfactory lobe of the guinea pig. An experimental anatomical study. Acta anat. (Basel) 53, 1–109 (1963)

    Google Scholar 

  • Lohman, A. H. M., Mentink, G. M.: The lateral olfactory tract, the anterior commissure and the cells of the olfactory bulb. Brain Res. 12, 396–413 (1969)

    Google Scholar 

  • Luciano, L., Reale, E., Ruska, H.: Über eine „chemoreceptive“ Sinneszelle in der Trachea der Ratte. Z. Zellforsch. 85, 350–375 (1968)

    Google Scholar 

  • Mac Leod, P.: Structure and function of higher olfactory centers. In: Handbook of Sens. Physiol., Vol. IV, Part 1, pp. 182–201, ed. L. M. Beidler. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • Moulton, D. G.: Dynamics of cell populations in the olfactory epithelium. Pers. Mitteilung (1974)

  • Murray, R. G.: Ultrastructure of taste receptors. In: Handbook of Sens. Physiol., Vol. IV, Part 2, pp. 31–48, ed. L. M. Beidler. Berlin-Heidelber-New York: Springer 1971

    Google Scholar 

  • Okano, M., Weber, A. F., Frommes, St. P.: Electron microscopic studies of the distal border of the canine olfactory epithelium. J. Ultrastruct. Res. 17, 487–502 (1967)

    Google Scholar 

  • Powell, T. P. S., Cowan, W. M., Raisman, G.: The central olfactory connexions. J. Anat. (Lond.) 99, 791–813 (1965)

    Google Scholar 

  • Price, J. L.: The termination of centrifugal fibers in the olfactory bulb. Brain Res. 7, 483–486 (1968)

    Google Scholar 

  • Rall, W., Shepherd, G. M., Reese, T. S., Brightman, M. W.: Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966)

    Google Scholar 

  • Reese, T. S.: Olfactory cilia in the frog. J. Cell Biol. 25, 209–230 (1965)

    Google Scholar 

  • Seifert, K.: Licht- und elektronenmikroskopische Untersuchungen am Jakobson'schen Organ (Organon vomero-nasale) der Katze. Arch. klin. exp. Ohr.-, Nas.- u. Kehlk.-Heilk. 200, 223–251 (1971)

    Google Scholar 

  • Seifert, K.: Licht- und elektronenmikroskopische Untersuchungen der Bowman Drüsen in der Riechschleimhaut makrosmatischer Säuger. Arch. klin. exp. Ohr.-, Nas.- u. Kehlk.-Heilk. 200, 252–274 (1971)

    Google Scholar 

  • Valverde, F.: The commissura anterior pars bulbaris. Anat. Rec. 148, 406–407 (1964)

    Google Scholar 

  • Valverde, F.: Studies on the piriform lobe. Cambridge, Mass.: Harvard University Press 1965

    Google Scholar 

  • Young, M. W.: The nuclear pattern and fiber connections of non cortical centers of the telencephalon in the rabbit. J. comp. Neurol. 65, 295–401 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Unterstützt durch die Deutsche Forschungsgemeinschaft „Rezeptorphysiologie“ und des SFB 114 „Bionach“.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andres, K.H. Neue morphologische Grundlagen zur Physiologie des Riechens und Schmeckens. Arch Otorhinolaryngol 210, 1–41 (1975). https://doi.org/10.1007/BF00453706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00453706

Navigation