Skip to main content
Log in

Functions of different receptor systems in the reptilian labyrinth

  • Published:
Archives of oto-rhino-laryngology Aims and scope Submit manuscript

Summary

Different biopotentials, following a mechanical stimulus, were recorded from single hair cells of the reptilian labyrinth, with electronoptically circumscript localizations: 1. From the apical cell pole, the receptor potential, intracellular or from the ciliary surface, within the physiological range proportional to stimulus amplitude, frequency or phase, without delay, and with no real threshold of mechanosensitivity, as measured by ciliary displacement amplitude or velocity. 2. From the synaptic zone, in the basal region of the hair cell, or from contacting nerve endings, the synaptic potentials, local excitatory or inhibitory processes, respectively, with measurable latencies and with non-linear distortion. 3. From the (dendritic) endings of the first afferent neuron (or neurons), spike-shaped action potentials, synchronized by the (excitatory) synaptic potentials. Characteristic curves were plotted as a quantitative representation of the mechano-electric input-output relations of the different types of hair cells. For proceeding morphological and physiological system analysis, the comparison of the different submammalian inner-ear receptor systems gives us some new possibilities of a closer correlation between ultrastructure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, K. H., Düring, M. v., Khan, N. S., Trincker, D. E. W.: Comparative studies on ultrastructure and functions of labyrinth receptors and brain stem neurons in submammalian vertebrates. In: Inner Ear Biology, Bordeaux 1977. Portmann, M., Aran, J.-M. (eds.). INSERM (Paris) 68, 77–90 (1977)

  2. Baird, I. L.: The anatomy of the reptilian ear. In: Biology of the reptilia, Vol. 2. Gans, C. (ed.), p. 193–275. London, New York: Academic Press 1970/78

    Google Scholar 

  3. Düring, M. v., Trincker, D. E. W., Röskenbleck, H.: Ultrastructure and function of the labyrinthine sensory systems in caiman crocodilus. Pflügers Arch. Physiol. 368 [Suppl. R 43] 172 (1977)

    Google Scholar 

  4. Flock, Å., Flock, B., Murray, E.: Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol. (Stockh.) 83, 85–91 (1977)

    Google Scholar 

  5. Gawlik, P., Khan, N. S., Küpper, R., Müller-Arnecke, H., Trincker, D. E. W.: Studies on receptor functions of lagena and papilla basilaris in the tokay and caiman. Pflügers Arch. Physiol. 373 [Suppl. R 86] 315 (1978)

    Google Scholar 

  6. Hillman, D. E., Lewis, E. R.: Morphological basis for a mechanical linkage in ototlithic receptor transduction in the frog. Science 174, 416–419 (1971)

    Google Scholar 

  7. Hudspeth, A. J., Corey, D. P.: Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. USA 74, 2407–2411 (1977)

    Google Scholar 

  8. Kauffmann, G.: Zur Abhängigkeit der Cochleapotentiale des Kaimans vom Stoffwechsel, von aktiven Transporten und von der Temperatur. J. Comp. Physiol. 90, 245–273 (1974)

    Google Scholar 

  9. Khan, N. S., Küpper, R., Müller-Arnecke, H., Trincker, D. E. W.: Mechanosensitivity of labyrinthine receptor systems in Gekkonidae. Pflügers Arch. Physiol. 373 [Suppl. R 86] 314 (1978)

    Google Scholar 

  10. Khan, N. S., Müller-Arnecke, H., Trincker, D. E. W.: Hair-cell functions and related neuronal activities in the different receptor systems of the geckonid and crocodilian labyrinth. J. Physiol. (Lond.) 284, 78–79P (1978)

    Google Scholar 

  11. Khan, N. S., Müller-Arnecke, H., Röskenbleck, H., Trincker, D. E. W.: Sequential stages of the mechano-electric transduction by hair cells. Pflügers Arch. Physiol. 377 [Suppl. R 50] 200 (1978)

    Google Scholar 

  12. Khan, N. S., Trincker, D. E. W.: Intracellular receptor potentials and neuronal responses of the vestibular systems in caiman crocodilus. Proc. Int. Un. Physiol. Sci. (Paris) 13, 382, 126 (1977)

    Google Scholar 

  13. Khan, N. S., Trincker, D. E. W.: Intracellular receptor-potential recordings from cristae ampullares and maculae utriculi et sacculi in the caiman. Pflügers Arch. Physiol. 368 [Suppl. R 44] 173 (1977)

    Google Scholar 

  14. Klinke, R., Galley, N.: Efferent innervation of vestibular and auditory receptors. Physiol. Rev. 54, 316–357 (1974)

    Google Scholar 

  15. Llinás, R., Precht, W. (eds.): Frog neurobiology. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  16. Manley, G.: A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26, 608–621 (1973)

    Google Scholar 

  17. Sand, O., Ozawa, S., Hagiwara, S.: Electrical and mechanical stimulation of hair cells in the mudpuppy. J. Comp. Physiol. (A) 102, 13–26 (1975)

    Google Scholar 

  18. Smith, C. A., Takasaka, T.: Auditory receptor organs of reptiles, birds, and mammals. In: Contributions to sensory physiology. Vol. 5. Neff, W. D. (ed.), p. 129–178. London, New York: Academic Press 1971

    Google Scholar 

  19. Spoendlin, H.: Innervation densities of the cochlea. Acta Otolaryngol. (Stockh.) 73, 235–248 (1972)

    Google Scholar 

  20. Trincker, D. E. W.: The transformation of mechanical stimulus into nervous excitation by the labyrinthine receptors. In: Biological receptor mechanisms. Symp. Soc. Exp. Biol. (Cambridge) 16, 289–316 (1962)

    Google Scholar 

  21. Trincker, D. E. W., Khan, N. S.: Labyrinthine receptor potentials, peripheral and central neuronal responses, under afferent-efferent bilateral interaction conditions in the vestibular systems of frog and caiman. IRCS Med. Sci. (Nerv. Syst. Physiol.) 5, 29 (1977)

    Google Scholar 

  22. Trincker, D. E. W., Khan, N. S., Gawlik, P.: Peripheral and central neuronal responses and bilateral interaction in the vestibular systems of the caiman. Pflügers Arch. Physiol. 368 [Suppl. R 44] 174 (1977)

    Google Scholar 

  23. Trincker, D. E. W., Khan, N. S., Müller-Arnecke, H.: Comparative studies on DC resting potentials of the mammalian and reptilian labyrinth organs. IRCS Med. Sci. (Nerv. Syst. Physiol.) 6, 211 (1978)

    Google Scholar 

  24. Weiss, T. F., Mulroy, M. J., Altmann, D. W.: Intracellular responses to acoustic clicks in the inner ear of the alligator lizard. J. Acoust. Soc. Am. 55, 606–619 (1974)

    Google Scholar 

  25. Weiss, T. F., Altmann, D. W., Mulroy, M. J.: Endolymphatic and intracellular resting potential in the alligator lizard cochlea. Pflügers Arch. Physiol. 373, 77–84 (1978)

    Google Scholar 

  26. Wersäll, J., Kimura, R. S., Lundquist, P.-G.: Early post-mortem changes in the organ of Corti (Guinea pigs). Z. Zellforsch. 65, 220–237 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.S., Müller-Arnecke, H., Röskenbleck, H. et al. Functions of different receptor systems in the reptilian labyrinth. Arch Otorhinolaryngol 224, 31–35 (1979). https://doi.org/10.1007/BF00455221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00455221

Key words

Navigation