Skip to main content
Log in

Histone differentiation and nuclear activity

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

When fast green and eosin are used in combination to stain histones, nuclei display different affinities toward the dyes, some binding fast green exclusively, others binding eosin exclusively, and still others, both stains. In a given tissue, the frequencies of nuclei exhibiting the different colors remain fairly constant over a wide range of staining conditions. Nuclei of cells of the same type may stain differently, but when they are in the same stage of development or state of activity they tend to stain alike. Xenopus erythrocyte nuclei stain bright pink. Condensed mitotic and meiotic chromosomes stain purple. In the grasshopper spermatocyte, the main body of the interphase nucleus stains bright green, but the condensed chromosome stains purple.

The mole crab sperm contains several distinct histone-like proteins, that differ in their amino acid compositions, within separate areas of the cell. In these sperms, the lysine-rich histones bind eosin, while the protamine-like protein and arginine-rich histone bind fast green. In general, the eosin and fast green bind preferentially to the lysine and arginine rich histones respectively, when the dyes are permitted to compete with one another.

In several systems, including spermiogenesis and erythropoiesis, the aquisition of an eosinophilic component by the nuclei accompanies the slowing of RNA synthesis, and it is suggested that there may be a causal relationship between the two events, the eosinophilic histone effecting RNA synthesis within the nucleus as a whole.

Résumé

  1. 1.

    Les divers noyaux d'un tissu se colorent d'une facon différente lorsqu'on utilise un mélange de vert rapide et d'éosine: certains en vert, d'autres en rose ou en violet.

  2. 2.

    Pour tous les tissus etudiés, la proportion des noyaux prenant l'une ou l'autre de ces colorations reste constante même lorsqu'on change le pH ou le rapport de concentration de ces deux colorants.

  3. 3.

    Dans les cellules où les histones riches en lysine et les histones riches en arginine sont physiquement séparées, on remarque que les premières fixent sélectivement l'éosine, tandis que les secondes au contraire fixent préférentiellement le vert rapide.

  4. 4.

    L'enlèvement des protéines éosinophiles des noyaux d'erythrocytes des grenouilles et des cellules du fois des souris provoque une diminution de l'éosinophilie et dévoile la présence des protéines qui se colorent en vert. Dans les erythrocytes cette diminution est accompagnée d'une perte des protéines riches en lysine.

  5. 5.

    Souvent, le constituant éosinophile apparaît dans la chromatine des cellules dans lesquelles la synthèse de l'ARN a été arrêtée. Cet arrêt peut accompagner un phénomène du développement, par example, spermatogenèse, ou erythropoèse. Il peut avoir lieu aussi temporairement comme dans le cas de la mitose et peut-être aussi dans celui du pancreas d'un animal affamé.

  6. 6.

    L'éosinophilie du chromosome X condensé du spermatocyte de la sauterelle représente un cas unique où les divers parties d'un noyau fonctionel se colorent différemment.

  7. 7.

    La synthèse de l'ADN peut avoir lieu dans les noyaux appartenant soit à la categorie verte, soit à la rose.

  8. 8.

    On conclut donc que l'éosinophilie reflète l'éxistance d'un moyen de régulation du noyau dans sa totalité et que consiste en l'inhibition par les histones riches en lysine de la synthèse de l'ARN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Alfert, M., and I. I. Geshwind: A selective staining method for the basic proteins of cell nuclei. Proc. nat. Acad. Sci. (Wash.) 39, 991–999 (1953).

    Google Scholar 

  • Allfrey, V. G., M. M. Daly, and A. E. Mirsky: Synthesis of protein in the pancreas. II. The role of ribonucleoprotein in protein synthesis. J. gen. Physiol. 37, 157–175 (1953); - Some observations on protein metabolism in chromosomes of non-dividing cells. J. gen. Physiol. 38, 415–424 (1955).

    Google Scholar 

  • Baxter, S. G.: Nervous control of the pancreatic secretion in the rabbit. Amer. J. Physiol. 96, 349–355 (1931).

    Google Scholar 

  • Black, M. M., and H. R. Ansley: Antigen induced changes in lymphoid cell histones. I. Thymus. J. Cell Biol. 26, 201–208 (1965).

    Google Scholar 

  • Bloch, D. P.: Cytochemistry of the histones. Protoplasmatologia V/3/d, 1–56. Wien, Springer 1966.

    Google Scholar 

  • —, and S. D. Brack: Evidence for cytoplasmic synthesis of nuclear histone during spermatogenesis in the grasshopper Chortophaga viridifasciata (de Geer), J. Cell. Biol. 22, 327–340 (1964).

    Google Scholar 

  • Brachet, J.: La détection histochemique des acides pentosenucléiques et la localisation des acides pentosenucléiques pendant le développement des amphibiens. C. R. Soc. Biol. (Paris) 133, 88–91 (1940).

    Google Scholar 

  • Danielli, J. F.: Studies on the cytochemistry of proteins. Cold Spr. Harb. Symp. quant. Biol. 14, 32–39 (1950).

    Google Scholar 

  • Das, N. K., E. P. Siegel, and M. Alfert: Synthetic activities during spermatogenesis in the locust. J. Cell Biol. 25, 387–395 (1965).

    Google Scholar 

  • Davies, H. G.: Structure in nucleated erythrocytes. Biophys. Biochem. Cytol. 9, 671–698 (1961).

    Google Scholar 

  • —, M. H. F. Wilkins, J. Chayen and L. R. Lacour: The use of the interference microscope to determine dry mass in living cells and as a quantitative cytochemical method. Quart. J. micr. Sci. 95, 271–304 (1954).

    Google Scholar 

  • Davis, H. S.: Spermatogenesis in Acrididae and Locustidae. Bull Mus. comp. Zool. 53, 59–185 (1908).

    Google Scholar 

  • Deitch, A. D.: An improved Sakaguchi reaction for cytophotometric use. J. Histochem. and Cytochem. 9, 477–483 (1961).

    Google Scholar 

  • Grasso, J. A., J. W. Woodard, and H. Swift: Cytochemical studies of nucleic acids and proteins in erythrocytic development. Proc. nat. Acad. Sci. (Wash.) 50, 134–140 (1963).

    Google Scholar 

  • Henderson, S. A.: RNA synthesis during male meiosis and spermiogenesis. Chromosoma (Berl.) 15, 345–366 (1964).

    Google Scholar 

  • Hill, R., J. W. Konigsberg, G. Guidotti, and L. C. Craig: The structure of human hemoglobin. J. biol. Chem. 237, 1549–1554 (1962).

    Google Scholar 

  • Hnilica, L., E. W. Johns, and J. A. V. Butler: Observation of the species and tissue specificity of histones. Biochem. J. 82, 123–124 (1962).

    Google Scholar 

  • Huang, R. C., J. Bonner, and K. Murray: Physical and biological properties of soluble nucleohistones. J. molec. Biol. 8, 54–64 (1964).

    Google Scholar 

  • Leach, A. A.: The amino acid composition of amphibian, reptile, and avian gelatins. Biochem. J. 67, 83–87 (1957).

    Google Scholar 

  • Littau, V. C., C. J. Burdick, V. G. Allfrey, and A. E. Mirsky: The role of histones in the maintenance of chromatin structure. Proc. nat. Acad. Sci. (Wash.) 54, 1204–1212 (1965).

    Google Scholar 

  • Muckenthaler, F. A.: Autoradiographic study of nucleic acid synthesis during spermatogenesis in the grasshopper, Melanoplus differentialis. Exp. Cell Res. 35, 531–547 (1964).

    Google Scholar 

  • Murray, K.: Histone nomenclature. In: The Nucleohistones, ed. by Bonner and T'so, p. 15–20. San Francisco: Holden-Day 1964.

    Google Scholar 

  • Neelin, J. M., P. X. Callahan, D. C. Lamb, and K. Murray: The histones of chicken erythrocyte nuclei. Canad. J. Biochem. 42, 1743–1752 (1964).

    Google Scholar 

  • Phillips, D. M. P.: The histones (Chapt. 6). Progr. Biophys. 12, 211–280 (1962).

    Google Scholar 

  • Piez, K. A., and J. Gross: The amino acid composition and morphology of some invertebrate and vertebrate collagens. Biochim. biophys. Acta (Amst.) 34, 24–39 (1959).

    Google Scholar 

  • Pollister, A. W., and M. J. Moses: A simplified apparatus for photometric analysis and photomicrography. J. gen. Physiol. 32, 567–577 (1949).

    Google Scholar 

  • Prescott, D. M., and M. A. Bender: Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26, 260–268 (1962).

    Google Scholar 

  • Siekevitz, P., and G. E. Palade: A cytochemical study on the pancreas of the guinea pig. IV. Chemical and metabolic investigation of the ribonucleoprotein particles. J. biophys. biochem. Cytol. 5, 1–10 (1959).

    Google Scholar 

  • Taylor, H. J., and R. D. McMaster: Autoradiographic and microphotometric studies of desoxyribonucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma (Berl.) 6, 489–521 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These investigations were supported by grants from the United States Public Health Service and the National Science Foundation, to the author, and from fonds national suisse pour récherche scientifique to Prof. Michael Fischberg in whose institute the work was carried out. The work was done under tenure of a Fellowship from the John Simon Guggenheim Foundation.

With the technical assistance of Miss Barbro Aurell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, D.P. Histone differentiation and nuclear activity. Chromosoma 19, 317–339 (1966). https://doi.org/10.1007/BF00326921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326921

Keywords

Navigation