Skip to main content
Log in

Structure of kinetochore fibers: Microtubule continuity and inter-microtubule bridges

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

To understand how microtubules interact in forming the mitotic apparatus and orienting and moving chromosomes, the precise arrangement of microtubules in kinetochore fibers in Chinese hamster ovary cells was examined. Individual microtubules were traced, using high voltage electron microscopy of serial 0.25 μm sections, from the kinetochore toward the pole. Microtubule arrangement in kinetochore fibers in untreated mitotic cells and in cells recovering from Colcemid arrest were similar in two respects: the number of microtubules per kinetochore (mean 14 and 12, respectively) and the nearest neighbor intermicrotubule distance (mean∼90 nm). In Colcemid recovered cells, over 90% of the microtubules in kinetochore fibers were attached to the kinetochore (i.e. kinetochore microtubules) and extended most or all of the distance to the pole. Few free microtubules were present in the kinetochore fibers; most non-kinetochore microtubles terminated in the pole. Since kinetochores in this Colcemid-recovered system have been demonstrated to nucleate microtubules (Witt et al., 1980), it seems likely that most if not all of these kinetochore microtubules originated at the kinetochore. Some of the reconstructed kinetochore fibers were attached to chromosomes with bipolar orientation, suggesting that kinetochore microtubules need not interact with many polar microtubules for orientation to occur. In Colcemid recovered cells lysed to reduce cytoplasmic background, microtubules in kinetochore fibers were preferentially preserved. The parallel and near-hexagonal order typical of microtubules in kinetochore fibers was maintained, as was the number of kinetochore microtubules (mean, 13). The intermicrotubule distance was slightly reduced in lysed cells (mean, 60 nm). Crossbridges about 5 nm wide and 30–40 nm long were visible in kinetochore fibers of lysed cells. Such crossbridges probably contribute to the stabilization and parallel order of microtubules in kinetochore fibers, and may have a functional role as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, L.A.: Structure of microtubules. In: Microtubules. (K. Roberts and J.S. Hyams, eds.), pp. 2–64. London: Academic Press 1979

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Formation of spindle fibers, kinetochore orientation and behavior of the nuclear envelope during mitosis in endosperm. Fine structural and in vitro studies. Chromosoma (Berl.) 27, 448–484 (1969)

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Spindle dynamics and chromosome movements. Int. Rev. Cytol. Suppl. 3, 1–271 (1972)

    Google Scholar 

  • Bergen, L.G., Borisy, G.G.: Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J. Cell Biol. 84, 141–150 (1980)

    Google Scholar 

  • Bergen, L.G., Kuriyama, R., Borisy, G.G.: Polarity of microtubules nucleated by Chinese hamster ovary cells in vitro. J. Cell Biol. 84, 151–159 (1980)

    Google Scholar 

  • Borisy, G.G.: Polarity of microtubules in the mitotic spindle. J. molec. Biol. 124, 565–570 (1978)

    Google Scholar 

  • Brinkley, B.R., Cartwright, J.C., Jr.: Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. J. Cell Biol. 50, 416–431 (1971)

    Google Scholar 

  • Brinkley, B.R., Cartwright, J., Jr.: Cold-labile and cold-stable microtubules in the mitotic spindle of mammalian cells. New York Acad. Sci. 253, 428–439 (1975)

    Google Scholar 

  • Brinkley, B.R., Fistel, S.H., Marcum, J.M., Pardue, R.L.: Microtubules in cultured cells: indirect immunofluorescent staining with tubulin antibody. Int. Rev. Cytol. 63, 59–95 (1980)

    Google Scholar 

  • Brinkley, B.R., Stubblefield, E., Hsu, T.C.: The effects of Colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster ovary cells. J. Ultrastruct. Res. 19, 1–18 (1967)

    Google Scholar 

  • Dietrich, J.: Reconstructions tridimensionnelles de l'appareil mitotique à partir de coupes sériées longitudinales de méiocytes polliniques. Biol. Cellulaire 34, 77–82 (1979)

    Google Scholar 

  • Euteneuer, U., McIntosh, J.R.: Polarity of midbody and phragmoplast microtubules. J. Cell Biol. 87, 509–515 (1980)

    Google Scholar 

  • Forer, A., Jackson, W.T., Engberg, A.: Actin in spindles of Haemanthus katherinae endosperm. J. Cell Sci. 37, 349–371 (1979)

    Google Scholar 

  • Fuge, H.: The arrangement of microtubules and the attachment of chromosomes to the spindle during anaphase in tipulid spermatocytes. Chromosoma (Berl.) 45, 245–260 (1974)

    Google Scholar 

  • Fuge, H.: Ultrastructure of the mitotic spindle. Int. Rev. Cytol. Suppl. 6, 1–58 (1977a)

    Google Scholar 

  • Fuge, H.: Ultrastructure of mitotic cells. In: Mitosis: Facts and questions. (M. Little, N. Paweletz, C. Petzelt, H. Ponstingl, D. Schroeter, H.-P. Zimmermann, eds.) pp. 51–68. Berlin, Heidelberg, New York: Springer (1977b)

    Google Scholar 

  • Fuge, H.: Microtubule disorientation in anaphase half-spindles during autosome segregation in crane fly spermatocytes. Chromosoma (Berl.) 76, 309–328 (1980)

    Google Scholar 

  • Fuge, H., Muller, W.: Mikrotubuli-Kontakt an Anaphasechromosomen in der I. meiotischen Teilung. Exp. Cell Res. 71, 241–245 (1972)

    Google Scholar 

  • Galavazi, G., Schenk, H., Bootsma, D.: Synchronization of mammalian cells in vitro by inhibition of the DNA synthesis. Exp. Cell Res. 41, 428–451 (1965)

    Google Scholar 

  • Gould, R.R., Borisy, G.G.: The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 73, 601–615 (1977)

    Google Scholar 

  • Heine, U.I., Kramarsky, B., Wendel, E., Suskind, R.G.: Enhanced proliferation of endogenous virus in Chinese hamster cells associated with microtubules and the mitotic apparatus of the host cell. J. gen. Virol. 44, 44–55 (1979)

    Google Scholar 

  • Heneen, W.K.: Kinetochores and microtubules in multipolar mitosis and chromosome orientation. Exp. Cell Res. 91, 57–62 (1975)

    Google Scholar 

  • Hepler, P.K., McIntosh, J.R., Cleland, S.: Intermicrotubule bridges in the mitotic spindle apparatus. J. Cell Biol. 45, 438–444 (1970)

    Google Scholar 

  • Hughes-Schrader, S.: Reproduction in Acroschismus wheeleri Pierce. J. Morph. and Physiol. 39, 157–205 (1924)

    Google Scholar 

  • Inoué, S.: Organization and function of the mitotic spindle. In: Primitive Motile Systems in Cell Biology (R.D. Allen, N. Kamiya, eds.), pp. 549–594. New York: Academic Press 1964

    Google Scholar 

  • Inoué, S., Ritter, H., Jr.: Mitosis in Barbulanympha. II. Dynamics of a two-stage anaphase, nuclear morphogenesis and cytokinesis. J. Cell Biol. 77, 655–684 (1975)

    Google Scholar 

  • Jensen, C., Bajer, A.: Spindle dynamics and arrangement of microtubules. Chromosoma (Berl.) 44, 73–89 (1973a)

    Google Scholar 

  • Jensen, C., Bajer, A.: Kinetochore microtubules of Haemanthus endosperm during mitosis. J. Cell Biol. 59, 156a (1973b)

  • LaFountain, J.R., Jr., Davidson, L.A.: An analysis of spindle ultrastructure during prometaphase and metaphase of micronuclear division in Tetrahymena. Chromosoma (Berl.) 75, 293–308 (1979)

    Google Scholar 

  • Lambert, A.M., Bajer, A.S.: Dynamics of spindle fibers and microtubules during anaphase and phragmoplast formation. Chromosoma (Berl.) 39, 101–144 (1972)

    Google Scholar 

  • Lambert, A.M., Bajer, A.: Fine structure dynamics of the prometaphase spindle. J. Microsc. Biol. Cell. 23, 181–194 (1975)

    Google Scholar 

  • Lambert, A.M., Bajer, A.: Microtubule distribution and reversible arrest of chromosome movements induced by low temperature. Cytobiol. 15, 1–23 (1977)

    Google Scholar 

  • McDonald, K.L., Edwards, M.K., McIntosh, J.R.: Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. J. Cell Biol. 83, 443–461 (1979)

    Google Scholar 

  • McIntosh, J.R.: Bridges between microtubules. J. Cell Biol. 61, 166–187 (1974)

    Google Scholar 

  • McIntosh, J.R.: Cell Division. In: Microtubules (K. Roberts and J.S. Hyams, eds.), pp. 382–441. London: Academic Press 1979

    Google Scholar 

  • McIntosh, J.R., Cande, W.Z., Snyder, J.A.: Structure and physiology of the mammalian mitotic spindle. In: Molecules and cell movement (S. Inoué and R.E. Stephens, eds.), pp. 31–76. New York: Raven 1975a

    Google Scholar 

  • McIntosh, J.R., Cande, W.Z., Snyder, J.A., Vanderslice, J.: Studies on the mechanism of mitosis: In: The Biology of cytoplasmic microtubules (D. Soifer, ed.), pp. 407–427. New York: New York Academy of Sciences (1975b)

    Google Scholar 

  • Nicklas, R.B.: Mitosis. In: Advances in cell biology (D.M. Prescott, L. Goldstein and E. McConkey, eds.), vol. 2, pp. 225–297. New York: Appleton-Century-Crofts 1971

    Google Scholar 

  • Paweletz, N.: Electronenmikroscopische Untersuchungen an frühen Stadien der Mitose bei HeLa-Zellen. Cytobiol. 9, 368–390 (1974)

    Google Scholar 

  • Rieder, C., Bajer, A.: Heat-induced reversible hexagonal packing of spindle microtubules. J. Cell Biol. 74, 717–725 (1977)

    Google Scholar 

  • Rieder, C.L., Borisy, G.G.: The attachment of kinetochores to the pro-metaphase spindle in PtKl cells. Recovery from low temperature treatment. Chromosoma (Berl.) 82, 693–716 (1981)

    Google Scholar 

  • Ris, H., Witt, P.L.: Structure of the mammalian kinetochore. Chromosoma (Berl.) 82, 153–170 (1981)

    Google Scholar 

  • Tilney, L.B.: How microtubule patterns are generated: the relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J. Cell Biol. 51, 837–854 (1971)

    Google Scholar 

  • Tucker, J.B.: Spatial organization of microtubules. In: Microtubules (K. Roberts and J.S. Hyams, eds.), pp. 315–357, London: Academic Press 1979

    Google Scholar 

  • Wheatley, D.N.: Pericentriolar virus-like particles in Chinese hamster ovary cells. J. gen. Virol. 24, 395–399 (1974)

    Google Scholar 

  • Wilson, H.J.: Arms and bridges on microtubules in the mitotic apparatus. J. Cell Biol. 40, 854–859 (1969)

    Google Scholar 

  • Witt, P.L., Ris, H., Borisy, G.G.: Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma (Berl.) 81, 483–505 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, P.L., Ris, H. & Borisy, G.G. Structure of kinetochore fibers: Microtubule continuity and inter-microtubule bridges. Chromosoma 83, 523–540 (1981). https://doi.org/10.1007/BF00328277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328277

Keywords

Navigation