Skip to main content
Log in

Thrombin stimulates the proliferation of human retinal glial cells

  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Retinal glial cells may play a role in most of the proliferative retinopathies. Although glial cell proliferation is a frequent event in retinal pathobiology, no specific mitogens for human retinal glial cells are known. Using cultured retinal glial cells obtained from postmortem adult human eyes, we found that thrombin stimulates glial cell proliferation in a dose-dependent manner with a half-maximal concentration of 100 ng/ml (0.4 U/ml). Thus, thrombin may be a plasma-derived mitogen capable of stimulating retinal glial cells to proliferate when there is a breakdown of the blood-retinal barrier. We also observed that this proliferative response of retinal glia requires more than 6 h of continuous exposure to thrombin. This finding suggests that a thorough wash-out of a thrombin-containing infusate and/or the rapid inactivation of this molecule would prevent thrombin from exacerbating a proliferative disorder of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge MJ, Brown KD, Irvine RF, Heslop JP (1985) Phosphoinositides and cell proliferation. J Cell Sci [Suppl] 3:187–198

    Google Scholar 

  2. Blacharski PA, Charles ST (1987) Thrombin infusion to control bleeding during vitrectomy for Stage V retinopathy of prematurity. Arch Ophthalmol 105:203–205

    Google Scholar 

  3. Burke JM (1982) Cultured retinal glial cells are insensitive to platelet-derived growth factor. Exp Eye Res 35:663–669

    Google Scholar 

  4. Campochiaro PA, Glaser BM (1985) Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 103:576–579

    Google Scholar 

  5. Campochiaro PA, Jerdan JA, Glaser BM (1984) Serum contains chemoattractants for human retinal pigment epithelial cells. Arch Ophthalmol 102:1830–1833

    Google Scholar 

  6. Campochiaro PA, Bryan JA III, Conway BP, Jaccoma EH (1986) Intravitreal chemotactic and mitogenic activity: implication of blood-retinal barrier breakdown. Arch Ophthalmol 104:1685–1687

    Google Scholar 

  7. Carney DH, Scott DL, Gordon EA, LaBelle EF (1985) Phosphoinositides in mitogenesis: neomycin inhibits thrombin-stimulated phosphoinositide in turnover and initiation of cell proliferation. Cell 42:479–488

    Google Scholar 

  8. Chan C-C, Rosenszajn LA, Nussenblatt RB, Muellenberg-Coulombre C, Hsu S-M, Palestine AG, Lando Z, Ben Ezra D (1984) Monoclonal antibodies to Muller's cells of the retina. Invest Ophthalmol Vis Sci 25:1008–1012

    Google Scholar 

  9. Chan C-C, Fujikawa LS, Rodrigues MM, Stevens G, Nussenblatt RB (1986) Histochemistry and electron microscopy of eyelitic membrane. Arch Ophthalmol 104:1040–1045

    Google Scholar 

  10. Chan C-C, Palestine AJ, Kuwabara T, Nussenblatt RB (1988) Immunopathologic study of Vogt-Koyanagi-Harada syndrome. Am J Ophthalmol 105:607–611

    Google Scholar 

  11. Chen LB, Buchanan JM (1975) Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci USA 72:131–135

    Google Scholar 

  12. Clarkson JC, Green WR, Massof D (1977) A histopathologic review of 168 cases of preretinal membranes. Am J Ophthalmol 84:1–17

    Google Scholar 

  13. DeBustros S, Glaser BM, Johnson MA (1985) Thrombin infusion for the control of intraocular bleeding during vitreous surgery. Arch Ophthalmol 103:837–839

    Google Scholar 

  14. DeJuan E Jr, Machemer R, Hatchell D (1985) Ultrastructural and immunocytochemical study of glial-vascular membranes in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci [Suppl] 26:23

    Google Scholar 

  15. DeJuan E, Gridz DC, Machemer R (1987) Ultrastructural characteristics of proliferative tissue in retinopathy of prematurity. Am J Ophthalmol 104:149–156

    Google Scholar 

  16. DeJuan E, Dickson JS, Hjelmeland L (1988) Serum is chemotactic for retinal-derived glial cells. Arch Ophthalmol 106:986–990

    Google Scholar 

  17. Eng LF, DeArmond SJ (1983) Immunochemistry of the glial fibrillary acidic protein. Prog Neuropathol 5:19–39

    Google Scholar 

  18. Fox AP, Nowycky MC, Tsien RW (1987) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol 394:173–200

    Google Scholar 

  19. Graviano MP, Gilman AG (1987) Guanine nucleotide-binding regulatory proteins: mediators of transmembrane signaling. Trends Pharmacol Sci 8:478–481

    Google Scholar 

  20. Hamilton C, Chandler D, Klintworth G, Machemer R (1982) A transmission and scanning electron microscopic study of surgically excised preretinal membrane proliferations in diabetes mellitus. Am J Ophthalmol 94:473–488

    Google Scholar 

  21. Hiscott PS, Grierson I, Trombretta CJ, Rehi ANS, Marshall J, McLeod D (1894) Retinal and epiretinal glia — an immunohistochemical study. Br J Ophthalmol 68:698–707

    Google Scholar 

  22. Hjelmeland LM, Harvey AK, Hohman TC, DeJuan E Jr (1987) Primary culture and chemotactic responses of human retinal glial. Invest Ophthalmol Vis Sci [Suppl] 28:208

    Google Scholar 

  23. Hsu SM, Rame L, Fange H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedure. J Histochem Cytochem 29:577–580

    Google Scholar 

  24. Jerdan JA, Pepose JS, Michelo RG, Hayashi H, DeBustros S, Sebag M, Glaser BM (1989) Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810

    Google Scholar 

  25. Kenyon KR, Pederson JE, Green WE, Maumanee AE (1975) Fibroglial proliferation in pars planitis. Trans Ophthalmol Soc UK 95:391–397

    Google Scholar 

  26. Nork TM, Wallow IHL, Sranek SJ, Anderson G (1987) Muller's cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol 105:1424–1429

    Google Scholar 

  27. Paris S, Pouyssegur J (1986) Pertussis toxin inhibits thrombin-induced activation of phosphoinositide hydrolysis and Na+/H+ exchange in hamster fibroblasts. EMBO J 5:55–60

    Google Scholar 

  28. Puro DG, Roberge F, Chan C-C (1989) Retinal glial cell proliferation and ion channels: a possible link. Invest Ophthalmol Vis Sci 30:521–529

    Google Scholar 

  29. Roberge FG, Caspi RR, Chan C-C, Kuwabara T, Nussenblatt RB (1985) Long-term culture of Muller cells from adult rats in the presence of activated lymphocytes/monocytes products. Curr Eye Res 9:975–982

    Google Scholar 

  30. Rodrigues MM, Newsome DA, Machemer R (1981) Further characterization of epiretinal membranes in human massive periretinal proliferation. Curr Eye Res 6:311–315

    Google Scholar 

  31. Rodrigues MM, Wiggert B, Tso MOM, Chader GJ (1986) Retinitis pigmentosa: immunohistochemical and biochemical studies of the retina. Can J Ophthalmol 21:79–83

    Google Scholar 

  32. Smiddy WE, Green WR, Michels RG, De la Cruz Z (1989) Ultrastructural studies of vitreomacular traction syndrome. Am J Ophthalmol 107:177–185

    Google Scholar 

  33. Soltoff SP, Cantley LC (1988) Mitogens and ion fluxes. Ann Rev Physiol 50:207–223

    Google Scholar 

  34. Thompson JT, Glaser BM, Michels RG, DeBustros S (1986) The use of intravitreal thrombin to control hemorrhage during vitrectomy. Ophthalmology 93:279–282

    Google Scholar 

  35. Van Horn DL, Aaberg T, Machemer R (1975) Glial cell proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 80:1–23

    Google Scholar 

  36. Van Obbergagn-Schillinge R, Perez-Rodriguez R, Pouyssegur J (1982) Hirudin, a probe to analyze the growth-promoting activity of thrombin in fibroblasts; re-evaluation of the temporal action of competence factors. Biochem Biophys Res Commun 106:79–86

    Google Scholar 

  37. Yong VW, Kim SU, Pleasure DE (1988) Growth factors for fetal and adult human astrocytes in culture. Brain Res 444:59–66

    Google Scholar 

  38. Zhuang YX, Cragoe EJ, Shaikewitz T, Glaser L, Cassel D (1984) Characterization of potent Na+/H+ exchange inhibitors of the amiloride series in A431 cells. Biochemistry 23:4481–4488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puro, D.G., Mano, T., Chan, CC. et al. Thrombin stimulates the proliferation of human retinal glial cells. Graefe's Arch Clin Exp Ophthalmol 228, 169–173 (1990). https://doi.org/10.1007/BF00935728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00935728

Keywords

Navigation