Skip to main content
Log in

Effect of whole-body vibration with different frequencies and intensities on auditory evoked potentials and heart rate in man

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

Auditory evoked brain potentials (AEP) and electrocardiogram (ECG) were recorded from 9 healthy male subjects during sinusoidal whole-body vibration exposure (WBV) in the longitudinal (±a z) direction with four frequencies (1 Hz, 2 Hz, 4 Hz, and 8 Hz) and two intensities as well as under non-WBV conditions. The sequences of the different experimental conditions were arranged according to a 9×9 Latin Square design. The sound of the electrohydraulic vibrator was masked by a constant noise level. A subtraction technique was used to eliminate vibration-synchronous activity contaminating the electroencephalogram. The AEP amplitude N1-P2 revealed systematic effects of different WBV frequencies and intensities. The amplitude decreased along with an increase in intensity (16 dB) by about 10 per cent. It diminished increasingly with a monotonic trend in the order non-WBV, WBV 8 Hz, WBV 4 Hz, WBV 2 Hz, and WBV 1 Hz. The interbeat-interval histograms computed from the ECG exhibited the highest mean values at MBV of 1 Hz, high intensity, and the lowest ones at WBV of 4 Hz, high intensity. The AEPs are reaffirmed as an informative measure for studying the WBV effect on central nervous information processing, although the modes of action are not yet fully known. Efferent influences on the acoustic input, cross-modality interaction, sensory mismatch, and changes of central nervous activation level are discussed as potential mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastek R, Buchholz Ch, Denisov El, Enderlein G, Kramer H, Malinskaja NN, Meister A, Metz A, Mucke R, Rhein A, Rothe R, Seidel H, Sroka Ch (1977) Comparison of the effects of sinusoidal and stochastic octave-band-wide vibrations — a multi-disciplinary study. Part I-III. Int Arch Occup Environ Health 39:143–179

    Google Scholar 

  • British Standards Institution 1973 BSI DD 23. Draft for development: Guide to the safety aspects of human vibration experiments

  • Davis H (1976) Principles of electric response audiometry. Ann Otol Rhinol Laryngol [Suppl] 85:28:25

    Google Scholar 

  • Davis H, Osterhammel PA, Wier CC, Gjerdingen DB (1972) Slow vertex potentials: interactions among auditory, tactile, electric and visual stimuli. Electroenceph Clin Neurophysiol 33:537–545

    Google Scholar 

  • Desmedt JE (1975) Physiological studies of the efferent recurrent auditory system. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. part 2. Springer, Berlin, pp 219–246

    Google Scholar 

  • Graybiel A (1975) Uglovye skorosti, uglovye uskorenija, uskorenija koriolisa. In: Foundations of space biology and medicine, vol. II. Izd-vo “Nauka”. National Aeronautics and Space Administration, Moskva, Washington, pp 265–32 [russian]

    Google Scholar 

  • Hay IS, Davis H (1971) Slow cortical evoked potentials: Interactions of auditory, vibro-tactile, and shock stimuli. Audiology 10:9–17

    Google Scholar 

  • International Standards Organization 1974 ISO 2631-1974 (E). Guide for the evaluation of human exposure to whole-body vibration

  • Kohl RL (1983) Sensory conflict theory of space motion sickness: an anatomical location for the neuroconflict. Aviat Space Environ Med 54:464–465

    Google Scholar 

  • Malinskaja NN (1968) Vlijanie vibracii na organizm čeloveka (Influence of vibration on man). In: Roščin AV (ed) Naučnyj obzor. Vlijanie šuma, vibracii i ul'trazvuka na organizm i profilaktika. Vypusk 1. VNIIMMTI, Moskva, pp 53–100

    Google Scholar 

  • Manninen O (1983) Studies of combined effects of sinusoidal whole body vibrations and noise of varying bandwidths and intensities on TTS2 in men. Int Arch Occup Environ Health 51:273–288

    Google Scholar 

  • Meister A, BrÄuer D, Kurerov NN, Metz A-M, Mucke R, Rothe R, Seidel H, StaroŽuk IA, Suvorov GA (1984) On the evaluation method for broad-band whole-body vibration. Ergonomics 27:959–980

    Google Scholar 

  • Oborne DJ (1983) Whole-body vibration and International Standard ISO 2631: a critique. Human Fact 25:55–69

    Google Scholar 

  • O'Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aerospace Med 45:366–369

    Google Scholar 

  • Okada A, Miyake H, Yamamura K, Minami M (1972) Temporary hearing loss induced by noise and vibration. J Acoust Soc Am 51:1240–1248

    Google Scholar 

  • Poulton EC (1978) Increased vigilance with vertical vibration at 5 Hz: an alerting mechanism. Appl Ergon 9:73–76

    Google Scholar 

  • Röder H, Freigang B, Kallwellis G, Rabending G (1983) Das akustisch evozierte Hirnstammpotential und seine klinische Anwendung. Psychiatr Neurol Med Psychol, Beih. 31. S. Hirzel Verlag, Leipzig

    Google Scholar 

  • Salomon G, Starr A (1963) Electromyography of middle ear muscles in man during motor activities. Acta Neurol Scand 39:161–168

    Google Scholar 

  • Seidel H (1981) Zur wissenschaftlichen Begründung arbeitshygienischer Grenzwerte für Ganzkörpervibration auf der Grundlage experimenteller Untersuchungen. Diss B. Akad Ärztl Fortbild der DDR, Berlin

    Google Scholar 

  • Seidel H, Bastek R, BrÄuer D, Buchholz Ch, Meister A, Metz A-M, Rothe R (1980) On human response to prolonged repeated whole-body vibration. Ergonomics 23:191–211

    Google Scholar 

  • Seidel H, Meister A, Metz A-M, Rothe R, Ullsperger P, Blüthner R, BrÄuer D, Menzel G, Sroka Ch (1984) Effects of exposure to whole-body vibration and noise on the TTS, performance, postural sway, and auditory evoked brain potentials. 1st Internat Conf on “The Combined Effects of Environmental Factors”, Tampere, Finland, 22–25 September 1984

    Google Scholar 

  • Shmarov A (1983) Brain stem and cortical auditory evoked responses before and after general vibration exposure. Electroenceph Clin Neurophysiol 55:24

    Google Scholar 

  • Shoenberger RW (1974) Mechanisms of vibration effects on aircrew performance. AGARD Conference preprint No 145 on vibration and combined stresses in advanced systems. Ltd. Harford House, London, pp B17-1–B17-7

    Google Scholar 

  • Skinner JE, Yingling CD (1977) Central gating mechanisms that regulate event-related potentials and behavior. A neural model for attention. In: Desmedt JE (ed) Attention, Voluntary contraction and event-related cerebral potentials. Prog Clin Neurophysiol 1:30–69

  • Ullsperger P (1981) AbhÄngigkeit von Kennwerten evozierter Hirnpotentiale des Menschen von Äu\eren und inneren Einflu\faktoren (Ein Beitrag zur Beziehung zwischen Informationsverarbeitungsprozessen und bioelektrischer HirnaktivitÄt). Diss B. Akad Ärztl Fortbild der DDR, Berlin

    Google Scholar 

  • Ullsperger P, Seidel H (1980) On auditory evoked potentials and heart rate in man during whole-body vibration. Eur J Appl Physiol 43:183–192

    Google Scholar 

  • Ullsperger P, Reimer W, Mucke R, Bastek R, Rehfeldt H, Küchler G (1977) Einflu\ statischer Muskelanspannung auf akustisch evozierte Hirnpotentiale, HautwiderstandsÄnderungen und bioelektrische MuskelaktivitÄt. Acta Biol Med Germ 36:213–219

    Google Scholar 

  • Yokoyama T, Osako S, Yamamoto K (1974) Temporary threshold shifts produced by exposure to vibration, noise, and vibration plus noise. Acta Otolaryngol 78:207–212

    Google Scholar 

  • Young LR (1979) Visual-vestibular interaction. In: Talbott RE, Humphrey DR (eds) Posture and movement. Raven Press, New York, pp 177–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullsperger, P., Seidel, H. & Menzel, G. Effect of whole-body vibration with different frequencies and intensities on auditory evoked potentials and heart rate in man. Europ. J. Appl. Physiol. 54, 661–668 (1986). https://doi.org/10.1007/BF00943357

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00943357

Key words

Navigation