Skip to main content
Log in

Properties of a feedback model for the circadian clock of Hemideina thoracica (Orthoptera; Stenopelmatidae)

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The single oscillator feedback model describing the circadian system of the nocturnal insect, Hemideina thoracica, (Gander and Lewis, 1979) has been developed and refined by restricting the range of parameter values which successfully simulate the known behaviour of this insect's circadian system. The model accounts for Aschoffs Law for nocturnal animals, and makes new predictions on the combined effects of temperature and constant light on the period of the free-running rhythm, which were verified experimentally. These simulations also indicate that the same general feedback model can be used to describe the circadian systems of other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff, J.: Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsychol. 49, 225–249 (1979)

    Google Scholar 

  • Benson, J.A., Jacklet, J.W.: Circadian rhythm of output from neurones in the eye of Aplysia. IV. A model of the clock: differential, sensitivity to light and low temperature pulses. J. Exp. Biol. 70, 195–211 (1977)

    Google Scholar 

  • Christensen, N.D., Lewis, R.D.: The circadian locomotor rhythm of Hemideina thoracica (Orthoptera; Stenopelmatidae): the circadian clock as a population of interacting oscillators. Physiol. Entomol. 7, 1–13 (1982)

    Google Scholar 

  • Christensen, N.D., Lewis, R.D.: The circadian locomotor rhythm of Hemideina thoracica (Orthoptera; Stenopelmatidae): a population of weakly coupled feedback oscillators as a model of the underlying pacemaker. Biol. Cybern. 47, 165–172 (1983)

    Google Scholar 

  • Cornelius, G., Rensing, L.: Can phase response curves of various treatments of circadian rhythms be explained by effects on protein synthesis and degradation? BioSystems, 15, 35–47 (1982)

    Google Scholar 

  • Drescher, K., Cornelius, G., Rensing, L.: Phase response curves obtained by perturbing different variables of a 24 hr model oscillator based on translational control. J. Theor. Biol. 94, 345–353 (1982)

    Google Scholar 

  • Gander, P.H.: The circadian locomotor activity rhythm of Hemideina thoracica (Orthoptera): the effects of temperature perturbations. Int. J. Chronobiol. 6, 243–262 (1979)

    Google Scholar 

  • Gander, P.H., Lewis, R.D.: The circadian locomotor activity rhythm of Hemideina thoracica (Orthoptera): a feedback model for the underlying clock oscillation. Int. J. Chronobiol. 6, 263–280 (1979)

    Google Scholar 

  • Johnsson, A., Karlsson H.G.: A feedback model for biological rhythms. 1. Mathematical description and basic properties of the model. J. Theor. Biol. 36 153–174 (1972)

    Google Scholar 

  • Lewis, R.D.: The circadian rhythm of the weta Hemidenia thoracica (Orthoptera); free-running rhythms, circadian rule and light entrainment. Int. J. Chronobiol. 3, 241–254 (1976)

    Google Scholar 

  • Njus, D., Sulzman, F.M., Hastings, J.W.: Membrane model for the circadian clock. Nature 248, 116–120 (1974)

    Google Scholar 

  • Sweeney, Beatrice M.: A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes. Int. J. Chronobiol. 2, 25–33 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, N.D., Lewis, R.D. & Gander, P.H. Properties of a feedback model for the circadian clock of Hemideina thoracica (Orthoptera; Stenopelmatidae). Biol. Cybern. 51, 87–92 (1984). https://doi.org/10.1007/BF00357921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357921

Keywords

Navigation