Skip to main content
Log in

Eine mathematische Formulierung für Reiz-Reaktionsbeziehungen retinaler Ganglienzellen

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

  1. 1.

    In order to describe stimulus-response relationships for retinal ganglion cells a mathematical formulation is presented on the basis of experimental data and some simple assumptions. This concept involves two mechanisms — an excitatory and an inhibitory one — both extending over the whole receptive field.

  2. 2.

    The following formula

    $$S\left( I \right) = \frac{{c{\text{ }}{I \mathord{\left/ {\vphantom {I {I_S - 1}}} \right. \kern-\nulldelimiterspace} {I_S - 1}}}}{{1 + a{\text{ }}a{I \mathord{\left/ {\vphantom {I {I_S + 1}}} \right. \kern-\nulldelimiterspace} {I_S + 1}}}}$$

    is used for description of the excitatory responses (on-response for on-center neurones, off-response for off-center neurones). The value ofa depends on the area of light stimulation,c is a constant;I/I S designates the ratio of stimulus brightness to threshold brightness.

  3. 3.

    Thresholds and suprathreshold response curves for concentric stimuli are described quantitatively by the formula. The experimental data were obtained by computer counts of spike discharges during 200 and 500 ms following the exciting light increment or decrement.

  4. 4.

    Ricco's, Weber-Fechner's and Stevens's laws are included in our conception as approximations of neuronal summations. These relations are limited to certain stimulus ranges; in contrast the above response function saturates at certain maximum discharge rates, as found by the S-shaped experimental curves; thus the formula is valid over the whole range of stimulation from threshold to very high intensities.

  5. 5.

    Thresholds as well as excitatory and inhibitory effects depend on background illumination and stimulus parameters. Therefore, center and surround size depend on these factors.

  6. 6.

    The formulation is set up for stationary responses and consequently does not describe time dependent characteristics.

  7. 7.

    Within these limits on-center and off-center neurones appear to have identical stimulus-response functions for adequate stimuli. Since in our experiments light increments and decrements were not symmetrical with respect to background illumination, a factor of 2 had to be introduced corresponding to the lower discharge rates of off-center-neurones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bekesy, G.: J. opt. Soc. Amer.50, 1060 (1960).

    Google Scholar 

  2. Bishop, P. O., Rodieck, R. W.: Symposion on Information Processing in Sight Sensory Systems 1965, Pasadena, Calif.

  3. Brown, J. E.: J. Neurophysiol.28, 1091 (1965).

    Google Scholar 

  4. —, Major, D.: Exp. Neurol.15, 70 (1966).

    Google Scholar 

  5. Büttner, U., Grüsser, O. J.: Kybernetik4, 81 (1968).

    Google Scholar 

  6. Campbell, F. W., Cooper, G. F., Enroth-Cugell, C.: J. Physiol. (Lond.)203, 223 (1969).

    Google Scholar 

  7. Creutzfeldt, O., Sakmann, B., Scheich, H.: Kybernetik4, 239 (1968).

    Google Scholar 

  8. Enroth-Cugell, C., Robson, J. G.: J. Physiol. (Lond.)187, 517 (1966).

    Google Scholar 

  9. Freund, H.-J., Grünewald, G.: Exp. Brain Res.8, 37 (1969).

    Google Scholar 

  10. Fry, G. A.: J. opt. Soc. Amer.53, 94 (1963).

    Google Scholar 

  11. Furman, G. G.: Kybernetik2, 257 (1965).

    Google Scholar 

  12. Grüsser, O. J.: Personal Communication.

  13. Hagiwara, S., Tasaki, J.: J. Physiol. (Lond.)148, 114 (1958).

    Google Scholar 

  14. Hartline, H. K.: Amer. J. Physiol.121, 400 (1937).

    Google Scholar 

  15. — Ratliff, F.: J. gen. Physiol.41, 1049 (1958).

    Google Scholar 

  16. Huggins, W. H., Licklider, J. C. R.: J. acoust. Soc. Amer.23, 290 (1951).

    Google Scholar 

  17. Kuffler, S. W.: J. Neurophysiol.16, 37 (1953).

    Google Scholar 

  18. Lange, G. D., Hartline, H. K., Ratliff, F.: In: The functional organisation of the compound eye, ed. C. G. Bernhard, p. 425. New York: Pergamon Press 1966.

    Google Scholar 

  19. Mach, E.: S.-B. Akad. Wiss. Wien, math.-nat. Kl.54, 393 (1866).

    Google Scholar 

  20. May, H. U., Fischer, B.: In Vorbereitung.

  21. Rodieck, R. W., Stone, J.: J. Neurophysiol.28, 833 (1965).

    Google Scholar 

  22. Taylor, W. K.: In: Information Theory (Colin Cherry, ed.). New York: Academic Press 1956.

    Google Scholar 

  23. Werner, G., Mountcastle, V. B.: J. Neurophysiol.28, 359 (1965).

    Google Scholar 

  24. Wiesel, T.: J. Physiol. (Lond.)153, 583 (1960).

    Google Scholar 

  25. Wita, C., Freund, H.-J.: Symp. BiokybernetikII, 1969, Leipzig.

  26. Wuttke, W., Rackensperger, W., Grüsser, O J.: Pflügers Arch. ges. Physiol.283, R 49 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, B., Freund, HJ. Eine mathematische Formulierung für Reiz-Reaktionsbeziehungen retinaler Ganglienzellen. Kybernetik 7, 160–166 (1970). https://doi.org/10.1007/BF00571696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571696

Navigation