Skip to main content
Log in

Occurrence and prevention of contraction bands in Purkinje fibres, transitional cells and working myocardium during global ischaemia

  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

Contraction bands usually occur in the intramural working myocardium following post-ischaemic reperfusion. In the subendocardium, however, they are found during ischaemia. Thus, we ascertained the contraction states of Purkinje fibres, transitional cells, subendocardial and intramural parts of the working myocardium during 30 min global ischaemia at 25° C. The effects with and without myocardial protection were compared. At the onset of pure ischaemia contraction bands are completely lacking in all cell types. During pure ischaemia contraction bands are found in all subendocardial cell types but not in the intramural working myocardium. A peak of pathological contraction states is found in the intramural working myocardium at the onset (0 min), in the subendocardial working myocardium at 10 min, in the transitional cells and Purkinje fibres at 30 min of pure ischaemia. Histidine-, tryptophan-, ketoglutarate-enriched (HTK) cardioplegia prevents contraction bands completely at the onset of ischaemia and prevents both contraction bands and pathological contraction states during ischaemia almost completely. Striking differences in the physiological contraction states are seen only in the working myocardium: HTK cardioplegia brings about dominance of relaxation during ischaemia. These findings may be due mainly to the effects of global ischaemia on the one hand and to catecholamines, calcium and oxygen on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamantidis MM, Caron JF, Dupuis BA (1986) Triggered activity induced by combined mild hypoxia and acidosis in guinea-pig Purkinje-fibers. J Mol Cell Cardiol 18:1287–1299

    Google Scholar 

  • Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168

    Google Scholar 

  • Anderson PG, Bischop SP, Digerness SB (1987) Transmural progression of morphologic changes during ischemic contracture and reperfusion in the normal and hypertrophied rat heart. Am J Pathol 129:152–167

    Google Scholar 

  • Appelbaum A, Kirklin JW, Tracey W, Blackstone EH (1983) Experimental studies on ischemic contracture. In: Kaplitt MJ, Borman JB (eds) Concepts and controversies in cardiovascular surgery. Appleton-Century-Crofts, Norwalk, Conn, pp 165–173

    Google Scholar 

  • Armiger LC, Smeeton WMI (1986) Contraction-band necrosis: patterns of distribution in the myocardium and their diagnostic usefullness in sudden cardiac death. Pathology 18:289–295

    Google Scholar 

  • Armiger LC, Urthaler F, James TN (1979) Morphological changes in the right ventricular septomarginal trabecula (false tendon) during maturation and ageing in the dog heart. J Anat 129:805–817

    Google Scholar 

  • Arnold G, Kaiser C, Fischer R (1985) Myofibrillar degeneration — a common type of myocardial lesion and its selective identification by a modified Luxol Fast Blue stain. Pathol Res Pract 180:405–415

    Google Scholar 

  • Ashraf M, Rahamathulla PM (1989) Beneficial effects of low doses of ethanol on reoxygenation injury following anoxia in rat hearts. Basic Res Cardiol 84:378–387

    Google Scholar 

  • Berry CL, van der Walt J, Wyse R (1981) Sarcomere relaxation and ischaemic myocardial injury. Virchows Arch [A] 390:205–210

    Google Scholar 

  • Baroldi G (1988) Anatomy and quantification of myocardial cell death. Methods Archiev Exp Pathol 13:87–113

    Google Scholar 

  • Billingham ME (1983) The role of endomyocardial biopsy in the diagnosis and treatment of heart disease. In: Silver MD (ed) Cardiovascular pathology, vol 2. Churchill Livingstone, New York, pp 1205–1224

    Google Scholar 

  • Bing OL, Fischbein MC (1979) Mechanical and structural correlates of contracture by metabolic blockade in cardiac muscle from the rat. Circ Res 45:298–308

    Google Scholar 

  • Bolli R, Patel BS, Hartley CJ, Thornby JI, Jerudi MO, Roberts R (1989) Nonuniform transmural recovery of contractile function in stunned myocardium. Am J Physiol 257:H375-F385

    Google Scholar 

  • Bretschneider HJ (1961) Sauerstoffbedarf und -versorgung des Herzmuskels. Verh Dtsch Ges Kreisl-Forsch 27:32–59

    Google Scholar 

  • Bretschneider HJ, Gebhard MM, Gersing E, Preusse CJ, Schnabel PhA (1983) Recent advances for myocardial protection. In: Kaplitt MJ, Borman JB (eds) Concepts and controversies in cardiovascular surgery. Appleton-Century-Crofts, Norwalk, Conn, pp 174–185

    Google Scholar 

  • Canale E, Campbell GR, Uehara Y, Fujiwara T, Smolich JJ (1983) Sheep cardiac Purkinje fibers: configurational changes during the cardiac cycle. Cell Tissue Res 232:97–110

    Google Scholar 

  • Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE (1982) Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139

    Google Scholar 

  • Doerr W (1957) Die Morphologie des Reizleitungssystems, ihre Orthologie und Pathologie. In: Spang K (ed) Rhythmusstörungen des Herzens. Thieme, Stuttgart, pp 1–46

    Google Scholar 

  • Elias EA, Elias RA, De Vries GP, Meijer AEFH (1982) Early and late changes in the metabolic pattern of the working myocardial fibres and Purkinje fibres of the human heart under ischaemic and inflammatory conditions: an enzyme histochemical study. Histochem J 14:445–459

    Google Scholar 

  • Elz JS, Nayler WG (1988) Contractile activity and reperfusion-induced calcium gain after ischemia in the isolated rat heart. Lab Invest 58:653–659

    Google Scholar 

  • Friedman PL, Fenoglio JJ, Wit AL (1975) Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res 36:127–144

    Google Scholar 

  • Ganote CE (1983) Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol 15:67–73

    Google Scholar 

  • Gebhard MM, Bretschneider HJ (1989) Myocardial protection. Curr Opin Cardiol 4:803–806

    Google Scholar 

  • Gettes LS (1986) Effects of ischemia on cardiac electrophysiology. In: Fozzard HA (ed) The heart and cardiovascular system. Raven Press, New York, pp 1317–1341

    Google Scholar 

  • Hearse DJ (1988) The protection of the ischemic myocardium: surgical success vs clinical failure. Prog Cardiovasc Dis 30:381–402

    Google Scholar 

  • Karch SB, Billingham ME (1985) Myocardial contraction bands revisited. Hum pathol 17:9–13

    Google Scholar 

  • Lowe JE, Cummings RG, Adams DH, Hullryde EA (1983) Evidence that ischemic cell death begins in the subendocardium independent of variation in collateral flow or wall tension. Circulation 68:190–202

    Google Scholar 

  • Lurie KG, Argentieri TM, Sheldon J, Frame LH, Matschinsky FM (1987) Metabolism and electrophysiology in subendocardial Purkinje fibers after infarction. Am J Physiol 253:H662-H670

    Google Scholar 

  • Mihatsch MJ (1988) Die Morphologie des Myokardinfarkts. Schweiz Med Wochenschr 118:1688–1691

    Google Scholar 

  • Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu D-J, Nakamura Y, Kumada T, Sasayama S, Kawai C, Hamashima Y (1987) Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 75:1074–1082

    Google Scholar 

  • Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824

    Google Scholar 

  • Novitzky D, Rose AG, Cooper DKC (1988) Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation 45:964–966

    Google Scholar 

  • Preusse CJ, Schulte HD, Bircks W (1987) High volume cardioplegia. Ann Chir et Gyn 76:39–45

    Google Scholar 

  • Ramsauer B, Schnabel PhA, Schmiedl A, Bartels U, Gebhard MM, Richter J, Bretschneider HJ (1989) Schädigungsmuster von Purkinje-Fasern und Arbeitsmyokard nach Kardioplegie und Ischämie. Verh Dtsch Ges Pathol 73:511

    Google Scholar 

  • Richter J, Schnabel PhA, Pflug M, Gebhard MM, Bretschneider HJ (1986) Elektronenmikroskopische Untersuchungen an Purkinje-Fasern bei globaler Ischämie unter Myokardprotektion. Verh Anat Ges 80:567–570

    Google Scholar 

  • Sandoe E, Sigurd B (1984) Arrhythmia. Fachmed, St. Gallen

    Google Scholar 

  • Schmiedl A, Schnabel PhA, Gebhard MM, Richter J, Bretschneider HJ (1989) Einfluß der Vorbehandlung auf den Kontraktionszustand und die Ultrastruktur von Myokardbiopsien. Z Kardiol 78[Supp14]:57

    Google Scholar 

  • Schmiedl A, Schnabel PhA, Mall G, Gebhard MM, Hunneman DH, Richter J, Bretschneider HJ (1990 a) The surface to volume ratio of mitochondria, a suitable parameter for evaluating mitochondrial swelling — correlations during the course of myocardial global ischaemia. Virchows Arch [A] 416:305–315

    Google Scholar 

  • Schmiedl A, Schnabel PhA, Haasis G, Mall G, Gebhard MM, Richter J, Bretschneider HJ (1990 b) Influence of pretreatment on interstitial and intracellular space of canine left-ventricular myocardium. Acta Anat 138:175–181

    Google Scholar 

  • Schmiedl A, Schnabel PhA, Gebhard MM, Richter J, Bretschneider HJ (1990 c) Influence of the method of cardiac arrest and of the ATP-concentration on the contraction state of working myocardium during global ischemia. Pflügers Arch 415 [Suppl 1]:R60

    Google Scholar 

  • Schnabel PhA, Gebhard MM, Pomykaj T, Schmiedl A, Preusse CJ, Richter J, Bretschneider HJ (1987) Myocardial protection: left ventricular ultrastructure after different forms of cardiac arrest. Thorac Cardiovasc Surgeon 35:148–156

    Google Scholar 

  • Schnabel PhA, Gebhard MM, Richter J, Schmiedl A, Bretschneider HJ (1988 a) Feinstruktur subendokardialer Purkinje-Fasern während und nach Ischämie: Einfluß unterschiedlicher kardioplegischer Lösungen. Z Herz-Thorax-Gefäßchir 2:54–61

    Google Scholar 

  • Schnabel PhA, Clavien H-J, Kehrer G, Ramsauer B, Schmiedl A, Gebhard MM, Richter J, Bretschneider HJ (1988 b) Strukturelle Ischämietoleranz subendokardialer Purkinje-Fasern im Vergleich zum Arbeitsmyokard. Verh Dtsch Ges Pathol 72:581

    Google Scholar 

  • Schnabel PhA, Gebhard MM, Pflug M, Richter J, Schmiedl A, Bretschneider HJ (1988c) Reversibilität feinstruktureller Veränderungen der Purkinje-Fasern nach Kardioplegie und globaler Ischämie. Z Kardiol 77 [Suppl 1]:95

    Google Scholar 

  • Schnabel PhA, Richter J, Gebhard MM, Mall G, Schmiedl A, Clavien H-J, Bretschneider HJ (1990 a) Ultrastructural effects induced by global ischaemia on the AV node compared with the working myocardium: a qualitative and morphometric investigation on the canine heart. Virchows Arch [A] 416:317–328

    Google Scholar 

  • Schnabel PhA, Richter J, Schmiedl A, Ramsauer B, Bach F, Haasis G, Gebhard MM, Mall G, Bretschneider HJ (1990 b) Schädigungsmuster und Strukturprotektion subendokardialer Purkinje-Fasern bei globaler Myokardischämie. In: Ganten D, Mall G (eds) Herz-Kreislaufregulation, Organprotektion und Organschäden. Schattauer, Stuttgart (in press)

    Google Scholar 

  • Schnabel PhA, Richter J, Schmiedl A, Ramsauer B, Bartels U, Gebhard MM, Mall G, Bretschneider HJ (1991) The ultrastructural effects of global ischaemia on Purkinje fibres compared with working myocardium: a qualitative and morphometric investigation on the canine heart. Virchows Arch [A] (to appear)

  • Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogeneous catecholamines in the ischemic myocardium of the rat. Circ Res 55:689–701

    Google Scholar 

  • Singal PK, Beamish RE, Dhalla NS (1983) Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease. Adv Exp Med Biol 161:391–401

    Google Scholar 

  • Thornell L-E, Sjöstrom M, Andersson K-E (1976) The relationship between mechanical stress and myofibrillar organization in heart Purkinje fibres. J Mol Cell Cardiol 8:689–695

    Google Scholar 

  • Todd GL, Baroldi G, Pieper GM, Clayton TC, Eliot RS (1985) Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol 17:317–338

    Google Scholar 

  • Van der Heide RS, Angelo JP, Altschuld RA, Ganote CE (1986) Energy dependence of contraction band formation in perfused hearts and isolated adult myocytes. Am J Pathol 125:55–68

    Google Scholar 

  • Vanderwee MA, Humphrey SM, Gavin JB, Armiger LC (1981) Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis. Virchows Arch [B] 35:159–167

    Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1. Academic Press, New York

    Google Scholar 

  • Yunge W, Bruneval P, Cokay MS, Berry B, Peters H, Poulsen R, Hüttner I (1989) Pertubation of the sarcolemmal membrane in isoproterenol-induced myocardial injury of the rat. Am J Pathol 134:171–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnabel, P.A., Schmiedl, A., Ramsauer, B. et al. Occurrence and prevention of contraction bands in Purkinje fibres, transitional cells and working myocardium during global ischaemia. Vichows Archiv A Pathol Anat 417, 463–471 (1990). https://doi.org/10.1007/BF01625725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01625725

Key words

Navigation