Skip to main content
Log in

Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

DNA content, ploidy level, cell size and nuclear number were investigated in 54 mammalian hearts from nine species. DNA content was determined biochemically and ploidy level of cells was studied by the means of Feulgen cytophotometry. Nuclear number was calculated by a new method, while cell size was determined by using ocular micrometry. In most mammals diploid cell nuclei predominate. Higher ploidy levels were found in the human and the pig hearts. The total amount of DNA correlated with the myocardial weight. Eight million heart muscle cell nuclei were found in mice (myocardial weight 160 mg), and 2600 million heart muscle cell nuclei in the human heart (myocardial weight 210 g), but in the hearts of horses up to 35 000 million heart muscle cell nuclei (myocardial weight 3.4 kg) were found. The number of heart muscle and connective tissue cell nuclei was correlated with myocardial weight. The ratio of connective tissue cell nuclei to heart muscle cell nuclei was between 2:1 and 3:1. In cardiac growth this ratio shifted towards connective tissue cell nuclei. Increased heart weight corresponds to an increase in cell size. Diameter between 11 μm and 18 μm may be an optimum for heart muscle cells of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler CP (1971) Polyploidisierung und Zellzahl im menschlichen Herzen. Habilitationsschrift, University of Freiburg

  2. Adler CP (1991) Polyploidization and augmentation of heart muscle cells during normal cardiac growth and in cardiac hypertrophy. In: Oberpriller JO, Oberpriller JC, Mauro A (eds) The development and regenerative potential of cardiac muscle. Harwood, New York, pp 227–252

    Google Scholar 

  3. Adler CP, Friedburg H (1978) DNS-Gehalt und Zellzahl in insuffizienten Menschenherzen. Verh Dtsch Ges Pathol 62:517

    Google Scholar 

  4. Adler CP, Friedburg H (1986) Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol 18:39–53

    Google Scholar 

  5. Adler CP, Sandritter W (1971) Numerische Hyperplasie der Herzmuskelzellen bei Hypertrophie. Dtsch Med Wochenschr 48:1895–1897

    Google Scholar 

  6. Black-Schaffer B, Gristead CE, Braunstein JN (1965) Endocardial fibroelastosis of large mammals. Circ Res 16:383–390

    Google Scholar 

  7. Breemen VL van (1953) Intercalated discs in heart muscle studied with the electron microscope. Anat Res 117:49

    Google Scholar 

  8. Brodsky VY, Uryvaeva IV (1985) Genome multiplication in growth and development. Cambridge University Press, Cambridge

    Google Scholar 

  9. Brodsky VY, Chernyaev AL, Vasilyeva IA (1991) Variability of the cardiomyocyte ploidy in normal human hearts. Virchows Arch [B] 61:289–294

    Google Scholar 

  10. Brodsky VY, Sarkisov DS, Arefyeva AM, Panova NW (1993) DNA and protein relations in cardiomyocytes. Growth reserve in cardiac muscle. Eur J Histochem 37:199–206

    Google Scholar 

  11. Brodsky VY, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424:429–435

    Google Scholar 

  12. Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetrric estimation of desoxyribonucleid acid. Biochem J 62:315–323

    Google Scholar 

  13. Dische Z (1955) Color reactions of nucleic acid components. In: Chargaff E, Davidson JN (eds) The nucleic acids, vol 1. Academic Press, New York, pp 285–305

    Google Scholar 

  14. Eisenstein R, Wied GL (1970) Myocardial DNA and protein in maturing and hypertrophied hearts. Proc Soc Exp Biol 133:176

    Google Scholar 

  15. Feulgen R, Rosenbeck H (1924) Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Z Phys Chem 135:203–248

    Google Scholar 

  16. Fischer B, Schluüter G, Adler CP, Sandritter W (1970) Cytophotometrische DNS-, Histon- und Nicht-Histonprotein-Bestimmung an Zellkernen von menschlichen Herzen. Beitr Pathol 141:238–260

    Google Scholar 

  17. Goodman LC, Epling S, Kelly S, Lee S, Fishbein MC (1990) DNA flow cytometry of myocardial cell nuclei in paraffin-embedded, human autopsy, cardiac tissue. Am J Cardiovasc Pathol 3:55–59

    Google Scholar 

  18. Graumann W (1953) Zur Standardisierung des Schiffschen Reagenz. Z Wiss Mikrosk 61:225–226

    Google Scholar 

  19. Grimm AF, Torre L de la, Porta M la(1970) Ventricular nuclei-DNA relationships with myocardial growth and hypertrophy in the rat. Circ Res 26:45–52

    Google Scholar 

  20. Hort W (1953) Quantitative histologische Untersuchungen an wachsenden Herzen. Virchows Arch 323:223–242

    Google Scholar 

  21. Immich H (1974) Medizinische Statistik. Thieme, Stuttgart New York

    Google Scholar 

  22. Korecky B, Rakusan K (1978) Normal and hypertrophic growth of the rat heart: changes in cell dimensions and number. Am J Physiol 234:H123-H128

    Google Scholar 

  23. Lindner J (1983) Age dependent biochemical changes of connective tissue. In: Platt D (ed) Cardiology and aging Schattauer, Stuttgart New York, pp 37–55

    Google Scholar 

  24. Linzbach AJ (1947) Mikrometrische und histologische Analyse hypertrophischer menschlicher Herzen. Virchows Arch 314:534–594

    Google Scholar 

  25. Linzbach AJ (1955) Quantitative Biologie und Morphologie des Wachstums einschließlich Hypertrophie und Riesenzellen. (Handbuch der Allgemeinen Pathologie VI/1) Springer, Berlin Göttingen Heidelberg, pp 181–306

    Google Scholar 

  26. Müller W (1883) Die Massenverhältnisse des menschlichen Herzens. Voss, Hamburg Leipzig

    Google Scholar 

  27. Oberpriller JO, Oberpriller JC (1985) Cell divisions in cardiac myocytes. In: Ferrans VJ, Rosenquist G, Weinstein C (eds) Cardiac morphogenesis. Elsevier, New York, pp 12–23

    Google Scholar 

  28. Pfizer P (1971) Nuclear DNA content of human myocardial cells. Curr Top Pathol 54:1–30

    Google Scholar 

  29. Poche R, Lindner E (1955) Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblütler und Kaltblütler. Z Zellforsch 43:104–120

    Google Scholar 

  30. Rosenberg B, Pfitzer P (1983) Ploidy in hearts of elderly patients. Virchows Arch [B] 42:19–24

    Google Scholar 

  31. Rumyantsev PP (1982) Cardiomyocytes in processes of reproduction, differentiation and regeneration (in Russian). Nauka, Leningrad

    Google Scholar 

  32. Sandritter W, Scomazzoni G (1964) Desoxyribonucleid acid content (Feulgen photometry) and dry weight (interference microscopy) of normal and hypertrophic heart muscle fibres. Nature 202:100–101

    Google Scholar 

  33. Sjöstrand FS, Andersson E (1954) Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia 10:369–370

    Google Scholar 

  34. Strunz K, Herrmann H (1967) Die Massenzunahmen von N und DNS in vier Geweben beim wachsenden Rind. Z Tierphysiol 22:286–290

    Google Scholar 

  35. Tschermak-Woess E (1970) Endomitose. (Handbuch der allgemeinen Pathologie II/2) Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Vendrely R, Vendrely C (1949) La teneur du noyau cellulaire en acide deoxiribonucleique a travers les organes, les invidus et les épèces animales. Etude particulière des mammifères. Experientia 5:327–329

    Google Scholar 

  37. Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 31:212–219

    Google Scholar 

  38. Zak R (1974) Development and proliferative capacity of cardiac muscle cell. Circ Res 34:17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, CP., Friedburg, H., Herget, G.W. et al. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Vichows Archiv A Pathol Anat 429, 159–164 (1996). https://doi.org/10.1007/BF00192438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192438

Key words

Navigation