Skip to main content
Log in

Development of the dorsal pancreatic primordium transplanted into the third ventricle of rats

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The dorsal pancreatic primordia of 12.5-day-old rat embryos transplanted into the third ventricle of adult female rats were immunohistochemically examined 10, 20 and 40 days after transplantation. On day 10, the grafts grew into an epithelial sacculus (S) with a thick subepithelial tissue (ST). Tubular and vesicular structures with a single cuboidal epithelium were found within the wall of the S, but they underwent thereafter a regression without allowing the primordia to differentiate into the exocrine acinar tissues. In contrast with this, pancreatic hormone-containing cells existed in the ST, and were arranged like the islands of a mature animal. The tissue also has smooth muscle fibers and neurons. When the primordium was grafted along with its root connected to the duodenum, gut-like tubular structures differentiated, showing mucosa with villi and crypts, submucous mesenchymal tissue and muscle layers. The mucosa possesses epithelial cells immunoreactive for the pancreatic hormones, and the muscle layers have the myenteric plexuses. These findings seem to provide further evidence that in the rat pancreas, pancreatic-hormone-containing cells differ from the acinar cells in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert S, Hanahan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295–308

    Article  PubMed  CAS  Google Scholar 

  • Andrew A (1984) The development of the gastro-entero-pancreatic neuroendocrine system in birds. In: Falkmer S, Hakanson R, Sundler F (eds) Proc. of the 5th E.K. Fernstrom Symposium. Elsevier, Amsterdam, pp 91–111

    Google Scholar 

  • Buchan AMJ, Gregor M, Riecken E-O (1987) Immunocytochemical characterization of glucagon-immunoreactive cells using monoclonal antibodies to pancreatic glucagon. Histochemistry 87:79–83

    Article  PubMed  CAS  Google Scholar 

  • Cantino D (1970) An histochemical study of the nerve supply to the developing alimentary tract. Experientia 26:766–767

    Article  PubMed  CAS  Google Scholar 

  • Chikamori-Aoyama M, Kawano H, Ootani T, Yokote R, Okamura Y, Daikoku S, Yanaihara N (1986) Ontogenesis of neurons containing proopiomelanocortin related- and proenkephalin A related-peptides in the rat hypothalamus: in vivo and transplantation studies. Biomed Res 7:233–244

    CAS  Google Scholar 

  • Daikoku S, Kawano H, Okamura Y, Tokuzen M, Nagatsu I (1986) Ontogensis of immunoreactive tyrosine hydroxylase-containing neurons in rat hypothalamus. Dev Brain Res 28:85–98

    Article  Google Scholar 

  • Daikoku S, Chikamori-Aoyama M, Tokuzen M, Okamura Y, Kagotani Y (1988) Development of hypothalamic neurons in intraventricular grafts: expression of specific transmitter phenotypes. Dev Biol 126:382–393

    Article  PubMed  CAS  Google Scholar 

  • Drews U (1975) Cholinesterase in embryonic development. Prog Histochem Cytochem 7:1–52

    PubMed  CAS  Google Scholar 

  • Fontaine J, Le Lièvre C, Le Douarin NM (1977) What is the developmental fate of the neural crest cells which migrate into the pancreas in the avian embryo? Gen Comp Endocrinol 33:394–404

    Article  PubMed  CAS  Google Scholar 

  • Fritsch HAR, Van Noorden S, Pearse AGE (1976) Cytochemical and immunofluorescence investigations on insulin-like producing cells in the intestine ofMytilus edulis L. (Bivalvia). Cell Tissue Res 165:365–369

    Article  PubMed  CAS  Google Scholar 

  • Gonet AE, Renold AE (1965) Homografting of fetal pancreas. Diabetologia 1:91–96

    Article  Google Scholar 

  • Håkanson R, Lundquist I (1971) Occurrence of insulin in rat duodenum and its depletion with alloxan. Experientia 27:1220–1221

    Article  PubMed  Google Scholar 

  • Halban PA, Powers SL, George KL, Bonner-Weir S (1987) Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 36:783–790

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Kawano H, Daikoku S, Shima K, Taniguchi H, Baba S (1988) Transient coappearance of glucagon and insulin in the progenitor cells of the rat pancreatic islets. Anat Embryol 178:489–497

    Article  PubMed  CAS  Google Scholar 

  • Hegre OD, Leonard RJ, Rusin JD, Lazarow A (1976) Transplantation of the fetal rat pancreas: Quantitative morphological analysis of islet tissue growth. Anat Rec 185:209–222

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Chikamori-Aoyama M, Katoh S, Maegawa M, Daikoku S (1987) Immunohistochemical evidence of serotoninergic regulation of vasoactive intestinal polypeptide (VIP) in the rat suprachiasmatic nucleus. Histochemistry 86:573–578

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Chikamori-Aoyama M, Katoh S, Kagotani Y, Daikoku S, Chihara K (1988) Suprachiasmatic nucleus neurons immunoreactive for vasoactive intestinal polypeptide have synaptic contacts with axons immunoreactive for neuropeptide Y: an immunoelectron microscopic study in the rat. Neurosci Lett 88:145–150

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Sohma S, Hirano H (1984) Light- and electron-microscopic studies on acetylcholinesterase activity in Auerbach’s plexus of the developing rat colon. Histochemistry 81:209–212

    Article  PubMed  CAS  Google Scholar 

  • Kawano H, Daikoku S (1988) Somatostatin-containing neuron systems in the rat hypothalamus. Retrograde tracing and immunohistochemical studies. J Comp Neurol 271:293–299

    Article  PubMed  CAS  Google Scholar 

  • Kawano H, Daikoku S, Saito S (1982) Immunohistochemical studies of intrahypothalamic somatostatin-containing neurons in rat. Brain Res 242:227–232

    Article  PubMed  CAS  Google Scholar 

  • Kühl C, Jensen SL, Nielsen OV (1976) Porcine gastric insulin. Endocrinology 99:1667–1670

    Article  PubMed  Google Scholar 

  • Le Douarin M (1978) The embryological origins of the endocrine cells associated with the digestive tract: experimental analysis based on the use of a stable cell marking technique. In: Bloom SR (ed) Gut Hormones. Churchill, London, pp 49–56

    Google Scholar 

  • McEvoy RC, Leung PE (1983) Transplantation of fetal rat islets into the cerebral ventricles of alloxan-diabetic rats. Amelioration of diabetes by syngeneic but not allogeneic islets. Diabetes 32:852–857

    PubMed  CAS  Google Scholar 

  • Millard PR, Path MRC, Garvey JFW, Jeffery EL, Morris PJ (1980) The grafted fetal rat pancreas. Features of development and rejection. Am J Pathol 100:209–224

    PubMed  CAS  Google Scholar 

  • Pearse AGE (1977) The diffuse neuroendocrine system and the APUD concept: related “endocrine” peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med Biol 55:115–125

    PubMed  CAS  Google Scholar 

  • Pearse AGE (1982) Islet cell precursors are neurons. Nature 295:96–97

    Article  PubMed  CAS  Google Scholar 

  • Popiela H, Tomita T, Hegre O, Moore W (1986) Islet neoformation in tissue culture. Mol Cell Endocrinol 48:11–20

    Article  PubMed  CAS  Google Scholar 

  • Rothman TP, Gershon MD (1982) Phenotypic expression in the developing murine enteric nervous system. J Neurosci 2:381–393

    PubMed  CAS  Google Scholar 

  • Rothman TP, Nilaver G, Gershon MD (1984) Colonization of the developing murine enteric nervous system and subsequent phenotypic expression by the precursors of peptidergic neurons. J Comp Neurol 225:13–23

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Fauquet M, Ziller C, Le Douarin NM (1979) Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Nature 282:853–855

    Article  PubMed  CAS  Google Scholar 

  • Teitelman G, Lee JK (1987) Cell lineage analysis of pancreatic islet cell development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev Biol 121:454–466

    Article  PubMed  CAS  Google Scholar 

  • Teitelman G, Joh TH, Reis DJ (1978) Transient expression of a noradrenergic phenotype in cells of the rat embryonic gut. Brain Res 158:229–234

    Article  Google Scholar 

  • Tsuruo Y, Kawano H, Nishiyama T, Hisano S, Daikoku S (1983) Substance P-like immunoreactive neurons in the tuberoinfundibular area of rat hypothalamus. Light and electron microscopy. Brain Res 289:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari M, Daikoku S (1982) Ontogenetic appearance of immunoreactive endocrine cells in rat pancreatic islets. Anat Embryol 165:63–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daikoku, S., Hashimoto, T. & Yokote, R. Development of the dorsal pancreatic primordium transplanted into the third ventricle of rats. Anat Embryol 181, 441–452 (1990). https://doi.org/10.1007/BF02433791

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433791

Key words

Navigation