Skip to main content
Log in

Lectin-binding patterns in the embryonic human paraxial mesenchyme

  • Original articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The paraxial mesenchyme in seven human embryos aged between Carnegie stages 12 and 17 was studied by lectin histochemistry with the lectins AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA. The paraxial mesenchyme was found to be segmented into sclerotomes by intersegmental vessels and from late stage 12 by intrasclerotomal clefts dividing each sclerotome into a cranial and caudal half. The lectins Con A, GSA II, LFA, LTA, SBA and SNA did not react at all in the paraxial mesenchyme. Staining for AIA, PNA, RCA I and WGA was found in the developing sclerotomes. However, no differences in the staining pattern between the two sclerotomal halves could be seen. It was striking that in contrast to the chick embryo no differences in binding for PNA between the cranial and caudal sclerotomal parts was observed. These findings reveal that PNA-binding sites do not play the same functional role in segmented axonal outgrowth and neural crest immigration into cranial sclerotomal halves in the human embryo, as found in chick embryonic development. Beginning with the stage 16-embryo, the already condensed caudal sclerotomal halves express Con A-, RCA- and PNA-binding sites. The staining for PNA in particular marked the differentiation of chondrogenous structures developing in this half. From the late stage 12 or stage 13, the walls of intersegmental and other vessels showed binding sites for AIA, PNA, RCA I, SNA and WGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alroy J, Goyal V, Skutelsky E (1987) Lectin histochemistry of mammalian endothelium. Histochemistry 86:603–607

    Google Scholar 

  • Asamaoto K, Noiyo Y, Aoyama H (1990) Do peanut agglutinin receptors on somites control the behavior of neural cells? Dev Growth Differ 32:91–96

    Google Scholar 

  • Bagnall KM, Sanders EJ (1989) The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo. Anat Embryol 180:505–513

    Google Scholar 

  • Baur R (1969) Zum Problem der Neugliederung der Wirbelsäule. Acta Anat 72:321–356

    Google Scholar 

  • Bellairs R, Ede DA, Lash JW (eds) (1986) Somites in developing embryos. NATO ASI Ser A, vol 118. Plenum Press, New York

    Google Scholar 

  • Blechschmidt E (1960) The stages of human development before birth. An introduction to human embryology. Karger, Basel

    Google Scholar 

  • Bourrillon R, Aubery M (1989) Cell surface glycoproteins in embryonic development. Int Rev Cytol 116:257–338

    Google Scholar 

  • Choi HU, Tang L-H, Johnson TL, Rosenberg L (1985) Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem 260:13370–13376

    Google Scholar 

  • Christ B (1990) Entwicklung der Rumpfwand. In: Hinrichsen KV (ed) Humanembryologie. Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Springer, Berlin Heidelberg New York pp 823–837

    Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Google Scholar 

  • Currie JR, Maylié-Pfenninger M-F, Pfenninger KH (1984) Developmentally regulated plasmalemmal glycoconjugates of the surface and neural ectoderm. Dev Biol 106:109–120

    Google Scholar 

  • Damjanov I (1987) Biology of disease. Lectin cytochemistry and histochemistry. Lab Invest 57:5–20

    Google Scholar 

  • Davies JA, Cook GMW, Stern CD, Keynes RJ (1990) Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron 2:11–20

    Google Scholar 

  • Erickson CA, Loring JF, Lester SM (1989) Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo. Dev Biol 134:112–118

    Google Scholar 

  • Götz W, Fischer G, Herken R (1991) Lectin-binding pattern in the embryonic and early fetal human vertebral column. Anat Embryol 184:345–353

    Google Scholar 

  • Griffith CM, Sanders EJ (1991) Changes in glycoconjugate expression during early chick embryo development: a lectin-binding study. Anat Rec 231:238–250

    Google Scholar 

  • Hall BK (1977) Chondrogenesis of the somite mesoderm. Adv Anat Embryol Cell Biol 53:4–53

    Google Scholar 

  • Hall BK, Miyake T (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol 186:107–124

    Google Scholar 

  • Hennigar LM, Hennigar RA, Schulte BA (1987) Histochemical specificity of β-galactose-binding lectins from Arachis hypogaea (peanut) und Ricinus communis (Castor bean). Stain Technol 62:317–325

    Google Scholar 

  • Hoedt-Schmidt S, McClure J, Jasani MK, Kalbhen DA (1993) Immunohistochemical localization of articular cartilage proteoglycan and link protein in situ using monoclonal antibodies and lectin-binding methods. Histochemistry 99:391–403

    Google Scholar 

  • Keynes RJ, Stern CD (1986) Somites and neural development. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. NATO ASI Ser A, vol 118. Plenum Press, New York, pp 289–299

    Google Scholar 

  • Keynes RJ, Stern CD (1987) Mesenchymal-epithelial interactions during neural segmentation in the chick embryo. In: Wolff JR et al. (eds) Mesenchymal-epithelial interactions in neural development. NATO ASI Ser A, vol H5. Springer, Berlin Heidelberg, New York pp 309–322

    Google Scholar 

  • Keynes R, Cook G, Davies J, Lumsden A, Norris W, Stern C (1990) Segmentation and the development of the vertebrate nervous tissue. J Physiol 84:27–32

    Google Scholar 

  • Lallier TE (1991) Cell lineage and cell migration in the neural crest. Ann NY Acad Sci 615:158–171

    Google Scholar 

  • Layer PG, Alber R, Rathjen FG (1988) Sequential activation of butyrylcholinesterase in rostral half somites and acetylcholinesterase in motoneurons and myotomes preceding growth of motor axons. Development 102:387–396

    Google Scholar 

  • Loring JF, Erickson CA (1987) Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol 121:220–236

    Google Scholar 

  • Müller F, O'Rahilly R (1986) Somitic-vertebral correlation and vertebral levels in the human embryo. Am J Anat 177:3–19

    Google Scholar 

  • Newgreen DF, Powell ME, Moser B (1990) Spatiotemporal changes in HNK-1/L2 glycoconjugates on avian embryo somite and neural crest cells. Dev Biol 139:100–120

    Google Scholar 

  • Norris WE, Stern CD, Keynes RJ (1989) Molecular differences between the rostral and caudal halves of the sclerotome in the chick embryo. Development 105:541–548

    Google Scholar 

  • Oakley RA, Tosney KW (1991) Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol 147:187–206

    Google Scholar 

  • O'Rahilly R, Meyer DB (1979) The timing and sequence of events in the development of the human vertebral column during the embryonic period proper. Anat Embryol 157:167–176

    Google Scholar 

  • O'Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    Google Scholar 

  • O'Rahilly R, Müller F (1987) Developmental stages in human embryos. Carnegie Institution, Washington

    Google Scholar 

  • Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455

    Google Scholar 

  • Sanders EJ (1986) Cytochemistry of the cell surface and extracellular matrix during early embryonic development. Prog Histochem Cytochem 16:1–57

    Google Scholar 

  • Sasano Y, Mizoguchi I, Kagayama M, Shum L, Bringas, Jr P, Slavkin HC (1992) Distribution of type I collagen, type II collagen and PNA-binding glycoconjugates during chondrogenesis of three distinct embryonic cartilages. Anat Embryol 186:205–213

    Google Scholar 

  • Schauer R (1988) Sialic acids as antigenic determinants of complex carbohydrates. In: Wu Am, Adams LG (eds) The molecular immunology of complex carbohydrates. Adv Exp Med Biol 228:47–72

  • Scott JE (1988) Proteoglycan-fibrillar collagen interaction. Biochem J 252:313–323

    Google Scholar 

  • Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol 33:23–41

    Google Scholar 

  • Stern CD, Sisodiya SM, Keynes RJ (1986) Interactions between neuntes and somite cells: inhibition and stimulation of nerve growth in the chick embryo. J Embryol Exp Morphol 91:209–226

    Google Scholar 

  • Stern CD, Norris WE, Bronner-Fraser M, Carlson GJ, Faissner A, Keynes RJ, Schachner M (1989) J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo. Development 107:309–319

    Google Scholar 

  • Takagi M (1990) Ultrastructural cytochemistry of cartilage proteoglycans and their relation to the calcification process. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer, London, pp 111–127

    Google Scholar 

  • Theiler K (1988) Vertebral malformations. Adv Anat Embryol Cell Biol 112:1–99

    Google Scholar 

  • Töndury G, Theiler K (1990) Entwicklungsgeschichte und Fehlbildungen der Wirbelsäule. Die Wirbelsäule in Forschung und Praxis, vol 98. 2nd edn. Hippokrates, Stuttgart

    Google Scholar 

  • Tosney KW, Oakley RA (1990) The perinotochordal mesenchyme acts as a barrier to axon advance in the chick embryo: implications for a general mechanism of axonal guidance. Exp Neurol 109:75–89

    Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–120

    Google Scholar 

  • Wu AM, Sugii S, Herp A (1988) A table of lectin carbohydrate specificities. In: Bøg-Hansen TC, Freed DLJ (eds.) Lectins-biology, biochemistry, clinical biochemistry, vol 6. Sigma, St. Louis, pp 723–740

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, W., Frisch, D., Osmers, R. et al. Lectin-binding patterns in the embryonic human paraxial mesenchyme. Anat Embryol 188, 579–585 (1993). https://doi.org/10.1007/BF00187013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187013

Key words

Navigation