Skip to main content
Log in

Genetic heterogenity of the genes coding for the outer surface protein C (OspC) and the flagellin of Borrelia burgdorferi

  • Original Investigations
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The ospC gene coding for the outer surface protein OspC and the fla gene coding for the flagellin have been investigated in three different Borrelia burgdorferi sensu lato strains. These strains (the North American strain B31 and the European strains PKo and PBi) derive from various biological sources (lxodes dammini, human skin and human CSF) and belong to three different B. burgdorferi OspA serotypes and genospecies (OspA serotype 1, B. burgdorferi sensu stricto; OspA serotype 2, group VS461 and OspA serotype 4, B. garinii, respectively). The ospC and fla genes of the respective strains have been amplified by polymerase chain reaction, cloned in pUC8 and sequenced. The fla as well as the ospC genes were different among the three strains investigated. In general the fla genes are more conserved than the ospC genes. The fla genes have the same length of 1008 nucleotides coding for proteins of 336 amino acids, whereas the ospC genes differ in length. The ospC genes of strains B31, PKo and PBi have 630, 636 and 621 nucleotides encoding proteins of 210, 212 and 207 amino acids, respecctively. The ospC genes exhibit sequence identities between 70% and 74% among each other, sequence identities of the fla genes are in the range 96–97%. The ospC genes could be expressed in Escherichia coli to obtain proteins with and without leader peptides. The expression of the fla gene and an internal gene fragment resulted in the complete flagellin protein and a truncated protein (amino acids 129–251). The different ospC and fla gene products were immunoreactive with monoclonal antibodies and human sera and, thus, enlarge the spectrum of recombinant antigens to improve antibody detection in patients with Lyme borreliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JF, Magnarelli LA, LeFebrve B, Andreadis TG, McAninch JB, Perng GC, Johnson RC (1989) Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and lxodes dentatus in rural and urban areas. J Clin Microbiol 27:13–20

    Google Scholar 

  • Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, Assous M, Grimont P (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov. and Group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42:378–383

    Google Scholar 

  • Barbour AG, Schrumpf ME (1986) Polymorphism of major surface proteins of Borrelia burgdorferi. Zentralbl Bakteriol Mikrobiol Hyg [A] 263:83–91

    Google Scholar 

  • Barbour AG, Burgdorfer W, Grunwald E, Steere AC (1983a) Antibodies of patients with Lyme disease to components of the lxodes damini spirochete. J Clin Invest 72:504–515

    Google Scholar 

  • Barbour AG, Tessier SL, Todd WJ (1983b) Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41:795–804

    Google Scholar 

  • Barbour AG, Heiland RA, Howe TR (1985) Heterogeneity of major proteins in Lyme disease Borreliae: a molecular analysis of North American and European isolates. J Infect Dis 152:478–484

    Google Scholar 

  • Bertani G (1952) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Google Scholar 

  • Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100:243–255

    Google Scholar 

  • Bisset M, Hill W (1987) Characterization of Borrelia burgdorferi strains isolated form lxodes pacificus ticks in California. J Clin Microbiol 25:2296–2301

    Google Scholar 

  • Brown RN, Lane RS (1992) Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256:1439–1442

    Google Scholar 

  • Bruckbauer H, Preac-Mursic V, Fuchs R, Wilske B (1992) Cross-reactive proteins of Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis 11:1–9

    Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease — a tick-borne spirochetosis? Science 216:1317–1319

    Google Scholar 

  • Coleman JL, Benach JL (1987) Isolation of antigenic components from the Lyme disease spirochete; their role in early diagnosis. J Infect Dis 155:756–765

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    CAS  PubMed  Google Scholar 

  • Fikrig E, Barthold SW, Persing DH, Sun X, Kantor FS, Flavell RA (1992) Borrelia burgdorferi strain 25015: characterization of outer surface protein A and vaccination against infection. J Immunol 148:2256–2260

    Google Scholar 

  • Fuchs R, Jauris S, Lottspeich F, Preac-Mursic V, Wilske B, Soutschek E (1992) Molecular analysis and expression of a Borrelia burgdorferi gene encoding a 22-kDa protein (pC) in Escherichia coli. Mol Microbiol 6:503–509

    Google Scholar 

  • Gaßmann GS, Kramer M, Göbel UB, Wallich R (1989) Nucleotide sequence of a gene encoding the Borrelia burgdorferi flagellin. Nucleic Acids Res 17:3590

    Google Scholar 

  • Gaßmann GS, Jacobs E, Deutzmann R, Göbel UB (1991) Analysis of the Borrelia burgdorferi GeHo fla gene and antigenetic characterization of its gene product. J Bacteriol 173:1452–1459

    Google Scholar 

  • Hansen K, Hinderson P, Pedersen NS (1988a) Measurement of antibodies to the Borrelia burgdorferi flagellum improves serodiagnosis in Lyme disease. J Clin Microbiol 26:338–346

    Google Scholar 

  • Hansen K, Bangsborg JM, Fjordvang H, Pedersen NS, Hindersson P (1988b) Immunochemical characterization and isolation of the gene for a Borrelia burgdorferi immunodominant 60 kilodalton antigen common to a wide range of bacteria. Infect Immun 56:2047–2053

    Google Scholar 

  • Jonsson M, Noppa L, Barbour AG, Bergström S (1992) Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun 60:1845–1853

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Langenberg W, Rauws EAJ, Widjojokusumo A, Tytgat GNJ, Zanen HC (1986) Identification of Campylobacter pyloridis isolate by restriction endonuclease DNA analysis. J Clin Microbiol 24:414–417

    Google Scholar 

  • Luft BJ, Pawagi S, Jiang W, Fiseene S, Gorevic PD, Dunn J (1992) Analysis and expression of the Borrelia burgdorferi P/Gau fla gene: identification of heterogenity with the B31 strain. FEMS Microbiol Lett 93:63–68

    Google Scholar 

  • Picken RN (1992) Polymerase chain reaction primers and probes derived from flagellin sequences for specific detection of the agents of Lyme disease and North American relapsing fever. J Clin Microbiol 30:99–114

    Google Scholar 

  • Preac-Mursic V, Wilske B, Schierz G (1986) European Borrelia burgdorferi isolated from human and ticks: culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg [A] 263:112–118

    Google Scholar 

  • Preac-Mursic V, Wilske B, Patsouris E, Jauris S, Will G, Soutschek E, Reinhardt S, Lehnert G, Klockmann E, Mehraein P (1992) Active immunization with pC protein of Borrelia burgdorferi protects gerbils against Borrelia burgdorferi infection. Infection 20:342–349

    Google Scholar 

  • Rasiah C, Schlitz E, Reichert J, Vogt A (1992) Purfication and characterization of a tryptic peptide of Borrelia burgdorferi flagellin, which reduces cross-reactivity in immunoblots and ELISA. J Gen Microbiol 138:147–154

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen, Coulsen AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Viera J, Messing J (1982) The pUC plasmids, a M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Wallich R, Moter SE, Simon MM, Ebnet K, Heiberger A, Kramer MD (1990) The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin): molecular cloning, expression, and amplification of the gene. Infect Immun 58:1711–1719

    Google Scholar 

  • Wilske B, Preac-Mursic V, Schierz G, vBusch K (1986) Immunochemical and immunological analysis of European Borrelia burgdorferi strains. Zentralbl Bakteriol Mikrobiol Hyg [A] 263:92–102

    Google Scholar 

  • Wilske B, Preac-Mursic V, Schierz G, Kühbeck R, Barbour AG, Kramer M (1988) Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci 539:126–143

    Google Scholar 

  • Wilske B, Preac-Mursic V, Schierz G, Liegl G, Gueye W (1989) Detection of IgM and IgG antibodies to Borrelia burgdorferi using different strains as antigen. Zentralbl Bakteriol Mikrobiol Hyg [Suppl 18]: 299–309

  • Wilske B, Preac-Mursic V, Fuchs R, Bruckbauer H, Hofmann A, Zumstein G, Jauris S, Soutschek E, Motz M (1990) Immunodominant proteins of Borrelia burgdorferi; implications for improving serodiagnosis of Lyme borreliosis. In: Neu HC (eds) New antibacterial strategies. Churchill Livingstone, London, pp 47–63

    Google Scholar 

  • Wilske B, Luft B, Schubach WH, Zumstein G, Jauris S, Preac-Mursic V, Kramer MD (1992) Molecular analysis of the outer surface protein A (OspA) of Borrelia burgdorferi for conserved and variable antibody binding domains. Med Microbiol Immunol 181:191–207

    Google Scholar 

  • Wilske B, Preac-Mursic V, Göbel UB, Graf B, Jauris S, Soutschek E, Schwab E, Zumstein G (1993) An OspA-serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Zumstein G, Fuchs R, Hofmann A, Preac-Mursic V, Soutschek E, Wilske B (1992) Genetic polymorphism of the gene encoding the outer surface protein A (OspA) of Borrelia burgdorferi. Med Microbiol Immunol 181:57–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauris-Heipke, S., Fuchs, R., Motz, M. et al. Genetic heterogenity of the genes coding for the outer surface protein C (OspC) and the flagellin of Borrelia burgdorferi . Med Microbiol Immunol 182, 37–50 (1993). https://doi.org/10.1007/BF00195949

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195949

Keywords

Navigation