Skip to main content
Log in

Enhanced expression of mitochondrial genes in xeroderma pigmentosum fibroblast strains from various complementation groups

  • Original Papers
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

cDNA libraries constructed from cytoplasmic RNA of normal and xeroderma pigmentosum (XP) fibroblast strains were screened for differential gene expression. XP fibroblast strains included one representative of the complementation groups A, C, D, and one XP variant strain. The XP λgt10 cDNA libraries were differentially screened with in vitro transcripts made from cDNA in the pBluescript vector using both the same XP strain and the normal fibroblast strain. Eight differential clones were detected in the libraries of the XP group A, D, and C strains, which caused stronger signals when probed with transcripts from XP strains than with those from the normal strain. The cDNA clones were sequenced. Seven of the eight clones detected coded for three mitochondrial genes: subunit I of cytochromec oxidase (complex IV of the respiratory chain), apocytochromeb (subunit of complex III), and 16-S rRNA. Two clones representing essentially (a) subunit I of cytochromec oxidase and (b) 16-S rRNA diverged from the sequence of the human mitochondrial genome present in the data-base libraries. Clone a exhibited a transition mutation, clone b reflected a transcript of a mitochondrial genome rearranged in the 16-S rRNA gene, including four nucleotides of the adjacent tRNALeu gene. The apparently enhanced expression of mitochondrial genes in XP cells, together with the changes in DNA sequence, seem to indicate that functions of the ATP-generating system were impaired. This defect may have originated from mutations due to lack of DNA repair. The data can be interpreted in the light of mitochondrial changes that cause human neuromyopathies to occur. In analogy to these diseases the neurological symptoms in XP might be explained by abnormal mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

XP:

xeroderma pigmentosum

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci 85:2706–2708

    PubMed  Google Scholar 

  • Afifi AK, Aleu FP, Goodgold J, MacKay B (1966) Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology 13:475–481

    Google Scholar 

  • Afifi AK, Der Kalustian VM, Mire JJ (1972) Muscular abnormality in xeroderma pigmentosum. High resolution light-microscopy and electron-microscopic observations. J Neurol Sci 17:435–442

    PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    PubMed  Google Scholar 

  • Arrand JE, Bone NM, Johnson RT (1989) Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells. Proc Natl Acad Sci USA 86:6997–7001

    PubMed  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    PubMed  Google Scholar 

  • Barrows LR, Magee PN (1982) Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis 3:349–351

    PubMed  Google Scholar 

  • Becker Z (1991) Topoisomerase II-Aktivität in normalen und Xeroderma pigmentosum Fibroblasten des Menschen. Dissertation Universität Heidelberg

  • Caputo R, Califano A (1971) Ultrastructural changes in the epidermis of xeroderma pigmentosum lesions in various stages of development. Arch Dermatol Forsch 241:364–373

    PubMed  Google Scholar 

  • Cathala G, Savouret J-F, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) Laboratory methods. A method for isolation of intact, translationally active ribonucleic acid. DNA 2:329–335

    PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    PubMed  Google Scholar 

  • Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 53:573–594

    PubMed  Google Scholar 

  • Cleaver JE (1969) Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci USA 63:428–435

    PubMed  Google Scholar 

  • Cleaver JE (1990) Do we know the cause of xeroderma pigmentosum? Carcinogenesis 11:875–882

    PubMed  Google Scholar 

  • Crawford D, Zbinden I, Moret R, Cerutti P (1988) Antioxidant enzymes in xeroderma pigmentosum fibroblasts. Cancer Res 48:2132–2134

    PubMed  Google Scholar 

  • DiMauro S, Bonilla E, Zeviani M, Nakagawa M, De Vivo DC (1985) Mitochondrial myopathies. Ann Neurol 17:521–538

    PubMed  Google Scholar 

  • Domena JD, Mosbaugh DW (1985) Purification of nuclear and mitochondrial uracil-DNA glycosylase from rat liver. Identification of two distinct subcellular subforms. Biochemistry 24:7320–7328

    PubMed  Google Scholar 

  • Favaloro J, Treisman R, Kamen R (1980) Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol 65:718–749

    PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Addendum. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    PubMed  Google Scholar 

  • Fischer E, Thielmann HW, Neundörfer B, Rentsch FJ, Edler L, Jung EG (1982) Xeroderma pigmentosum patients from Germany: clinical symptoms and DNA repair characteristics. Arch Dermatol Res 274:229–247

    PubMed  Google Scholar 

  • Grossman LI (1990) Mitochondrial DNA in sickness and in health. Am J Hum Genet 46:415–417

    PubMed  Google Scholar 

  • Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269

    PubMed  Google Scholar 

  • Hanahan D (1985) Techniques for transformation ofE. coli. In: Glover DM (ed) DNA cloning. Oxford, Washington: IRL Press vol. 1, pp 109–135

    Google Scholar 

  • Hoeijmakers JHJ, Bootsma D (1990) Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2:311–320

    PubMed  Google Scholar 

  • Holt IJ, Harding AE, Petty RKH, Morgan-Hughes JA (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46:428–433

    PubMed  Google Scholar 

  • Kraemer KH, Slor H (1985) Xeroderma pigmentosum. Clin Dermatol 3:33–69

    PubMed  Google Scholar 

  • Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum. Arch Dermatol 123:241–250

    PubMed  Google Scholar 

  • Kuhnlein U, Lee B, Penhoet EE, Linn S (1978) Xeroderma pigmentosum fibroblasts of the D group lack an apurinic DNA endonuclease species with a low apparentK m . Nucleic Acids Res 5:951–960

    PubMed  Google Scholar 

  • Lander ES, Lodish H (1990) Mitochondrial diseases: gene mapping and gene therapy. Cell 61:925–926

    PubMed  Google Scholar 

  • Levin CJ, Zimmerman SB (1976) A DNA ligase from mitochondria of rat liver. Biochem Biophys Res Commun 69:514–520

    PubMed  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    PubMed  Google Scholar 

  • Lu X, Werner D (1988) Construction and quality of cDNA libraries prepared from cytoplasmic RNA not enriched in poly(A)+RNA. Gene 71:157–164

    PubMed  Google Scholar 

  • Lu X, Dengler J, Rothbarth K, Werner D (1990) Differential screening of murine ascites cDNA libraries by means of in vitro transcripts of cell-cycle-phase-specific cDNA and digital image processing. Gene 86:185–192

    PubMed  Google Scholar 

  • Mita S, Schmidt B, Schon EA, DiMauro S, Bonilla E (1989) Detection of “deleted” mitochondrial genomes in cytochrome-c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome. Proc Natl Acad Sci USA 86:9509–9513

    PubMed  Google Scholar 

  • Nishigori C, Miyachi Y, Imamura S, Takebe H (1989) Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts. J Invest Dermato 93:506–510

    Google Scholar 

  • Pettepher CC, LeDoux SP, Bohr VA, Wilson GL (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266:3113–3117

    PubMed  Google Scholar 

  • Petty RKH, Harding AE, Morgan-Hughes JA (1986) The clinical features of mitochondrial myopathy. Brain 109:915–938

    PubMed  Google Scholar 

  • Popanda O, Thielmann HW (1988) Comparison of DNA-incising capacities in fibroblast strains from the Mannheim XP collection after treatment withN-acetoxy-2-acetylaminofluorene and UV light. J Cancer Res Clin Oncol 114:459–467

    PubMed  Google Scholar 

  • Rasheed A, El-Hefnawi H, Nagy G, Wiskemann A (1969) Elektronenmikroskopische Untersuchungen bei Xeroderma pigmentosum. Arch Klin Exp Dermatol 234:321–344

    PubMed  Google Scholar 

  • Richter Ch, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    PubMed  Google Scholar 

  • Robbins JH (1988) Xeroderma pigmentosum. Defective DNA repair causes skin cancer and neurodegeneration. J Am Med Assoc 260:384–388

    Google Scholar 

  • Rooney BC, Horne CHW, Hardman N (1988) Molecular cloning of a cDNA for human pregnancy-specific β1-glycoprotein: homology with human carcinoembryonic antigen and related proteins. Gene 71:439–449

    PubMed  Google Scholar 

  • Rosing HS, Hopkins LC, Wallace DC, Epstein CM, Weidenheim K (1985) Maternally inherited mitochondrial myopathy and myoclonic epilepsy. Ann Neurol 17:228–237

    PubMed  Google Scholar 

  • Rydberg B, Lindahl T (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donorS-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J 1:211–216

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989a) Molecular cloning, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 2.60–2.64, 2.73–2.76

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989b) Molecular cloning, vol. 1. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, pp 1.36–1.37, 1.42–1.43

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989c) Molecular cloning, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 2.108–2.111

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989d) Molecular cloning, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 8.6–8.7

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Sasaki MS, Toda K, Ozawa A (1977) Role of DNA repair in the susceptibility to chromosome breakage and cell killing in cultured human fibroblasts. In: Seiji M, Bernstein IA (eds) Biochemistry of cutaneous epidermal differentiation. University Park Press, Baltimore London Tokyo, pp 167–180

    Google Scholar 

  • Satoh MS, Huh N, Rajewsky MF, Kuroki T (1988) Enzymatic removal ofO 6-ethylguanine from mitochondrial DNA in rat tissues exposed toN-ethyl-N-nitrosourea in vivo. J Biol Chem 263:6854–6856

    PubMed  Google Scholar 

  • Satokata I, Tanaka K, Miura N, Miyamoto I, Satoh Y, Kondo S, Okada Y (1990) Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc Natl Acad Sci USA 87:9908–9912

    PubMed  Google Scholar 

  • Saxon PJ, Schultz RA, Stanbridge EJ, Friedberg EC (1989) Human chromosome 15 confers partial complementation of phenotypes to xeroderma pigmentosum group F cells. Am J Hum Genet 44:474–485

    PubMed  Google Scholar 

  • Schenborn ET, Mierendorf RC Jr (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    PubMed  Google Scholar 

  • Schimke RT (1984) Gene amplification in cultured animal cells. Cell 37:705–713

    PubMed  Google Scholar 

  • Setlow RB, Regan JD, German J, Carrier WL (1969) Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci USA 64:1035–1041

    PubMed  Google Scholar 

  • Sperry AO, Blasquez VC, Garrard WT (1989) Dysfunction of chromosomal loop attachment sites: illegitimate recombination linked to matrix association regions and topoisomerase II. Proc Natl Acad Sci USA 86:5497–5501

    PubMed  Google Scholar 

  • Stich HF, San RHC (1971) Reduced DNA repair synthesis in xeroderma pigmentosum cells exposed to the oncogenic 4-nitroquinoline 1-oxide and 4-hydroxyaminoquinolinel-oxide. Mutat Res 13:279–282

    Google Scholar 

  • Stich HF, San HRC, Kawazoe Y (1973) Increased sensitivity of xeroderma pigmentosum cells to some chemical carcinogens and mutagens. Mutat Res 17:127–137

    PubMed  Google Scholar 

  • Tanaka K, Satokata I, Ogita Z, Uchida T, Okada Y (1989) Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc Natl Acad Sci USA 86:5512–5516

    PubMed  Google Scholar 

  • Tautz D, Renz M (1983) An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 132:14–19

    PubMed  Google Scholar 

  • Thielmann HW, Edler L, Friemel S (1986) Xeroderma pigmentosum patients from Germany: repair capacity of 45 XP fibroblast strains of the Mannheim XP collection as measured by colony-forming ability and unscheduled DNA synthesis following treatment with methyl methanesulfonate andN-methyl-N-nitrosourea. J Cancer Res Clin Oncol 112:245–257

    PubMed  Google Scholar 

  • Thielmann HW, Popanda O, Edler L, Jung EG (1991) Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany. Cancer Res 51:3456–3470

    PubMed  Google Scholar 

  • Tomkinson AE, Bonk RT, Linn S (1988) Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J Biol Chem 263:12532–12537

    PubMed  Google Scholar 

  • Tomkinson AE, Bonk RT, Kim J, Bartfeld N, Linn S (1989) Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res 18:929–935

    Google Scholar 

  • Vuillaume M, Daya-Grosjean L, Vincens P, Pennetier JL, Tarroux P, Baret A, Calvayrac R, Taieb A, Sarasin A (1992) Striking differences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis 13:321–328

    PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schnurr TG, Lezza AMS, Elsa II LJ, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242:1427–1430

    PubMed  Google Scholar 

  • Watanabe S, Chou JY (1988) Isolation and characterization of complementary DNAs encoding human pregnancy-specific β1-glycoprotein. J Biol Chem 263:2049–2054

    PubMed  Google Scholar 

  • Weeda G, Ham RCA van, Vermeulen W, Bootsma D, Eb AJ van der, Hoeijmakers JHJ (1990) A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62:777–791

    PubMed  Google Scholar 

  • Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon EA, Rowland LP (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38:1339–1346

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 136 and WE 589/2-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothe, M., Werner, D. & Thielmann, H.W. Enhanced expression of mitochondrial genes in xeroderma pigmentosum fibroblast strains from various complementation groups. J Cancer Res Clin Oncol 119, 675–684 (1993). https://doi.org/10.1007/BF01215987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215987

Key words

Navigation