Skip to main content
Log in

Vergleichende Analyse der feinstrukturellen Organisation offener Rhabdome in den Augen der Cucujiformia (lnsecta, Coleoptera), unter besonderer Berücksichtigung der Chrysomelidae

A comparative analysis of the ultrastructural organization in the eyes of Cucujiformia (Insecta, Coleoptera) with particular attention to the Chrysomelidae

  • Published:
Zoomorphologie Aims and scope Submit manuscript

Summary

Eyes of the Coleoptera previously examined possess fused rhabdoms in all but a few species that have open rhabdoms consisting of 2 central and 6 peripheral rhabdomeres. Recent investigation of more than 70 species from about 20 families (with a total of 150,000 species) led to the conclusion that nearly one-half of all Coleoptera species possess the open-rhabdom type of eye. All of these species belong to the Cucujiformia (composed of the 5 superfamilies Cleroidea, Lymexyloidea, Cucujoidea, Chrysomeloidea and Curculionoidea, sensu Crowson, 1967), and — until now — no species of this group has been found to have fused rhabdom eyes. The open rhabdomic eye is therefore considered a synapomorphous feature (sensu Hennig, 1966) of the Cucujiformia, and this taxon is regarded as a monophyletic.

From electronmicroscopic examinations of 41 Chrysomelidae species from 9 subfamilies and of 18 Cerambycidae of 3 subfamilies, the position of the central rhabdomeres (R 7, 8) relative to the peripheral rhabdomeres (R 1–6) and the direction of microvilli in the central rhabdomeres were chosen for comparison. The central rhabdomeres were found to be fused, laterally, to R 1 and R 4 in all of the species from the subfamily Chrysomelinae, but no such fusion was found in any species of the other 8 subfamilies of the Chrysomelidae, nor in any of the Cerambycidae or Bruchidae examined. Microvilli of R 7 and R 8 are parallel in Donaciinae, Criocerinae, Eumolpinae, and many Chrysomelinae, and in Lepturinae, Cerambycinae and Lamiinae (Cerambycidae) and in Bruchidae. Microvilli of both rhabdomeres are aligned in several directions in the Galerucinae, Hispinae, Clytrinae, but only inPhytodecta of the Chrysomelinae, and characteristic differences in the arrangement of microvilli were recognized among these Chrysomelidae. Microvilli were parallel in one of the central rhabdomeres, but aligned in two or more directions in the other, in species of Megalopodinae, Orsodacninae, but only inTimarcha among Chrysomelinae, and again the arrangement of microvilli was characteristic of the subfamilies of these Chrysomelidae (exception: Chrysomelinae).

The central rhabdomere systems possessing microvilli of only one direction, but not fused at any level of the ommatidia with peripheral rhabdomeres, are considered symplesiomorphous for this superfamily. This simple arrangement of microvilli in many diverse groups of Chrysomelidae, Cerambycidae and Bruchidae may be regarded as the basic pattern from which the different arrangements in other subfamilies were derived. Similarities in arrangement of the microvilli (among taxa of different families) are considered to be convergences. — The results are also discussed with a view to functional properties of the rhabdomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bott, H.: BeitrÄge zur Kenntnis vonGyrinus natator substriatus Steph. Z. Morph. ökol. Tiere10, 207–306 (1928)

    Google Scholar 

  • Brammer, J.D.: The ultrastructure of the compound eye of a mosquito,Aedes aegypti L. J. Exp. Zool.175, 181–196 (1970)

    Google Scholar 

  • Bugnion, E., Popoff, N.: Les yeux des insectes nocturnes. Archs. Anat. microsc.16, 261–343 (1914)

    Google Scholar 

  • Burton, P.R., Stockhammer, K.A.: Electron microscopic studies of the compound eye of the toadburg,Gelastocoris oculatus. J. Morph.127, 233–258 (1969)

    Google Scholar 

  • Butler, L., Roppel, R., Zeigler, J.: Post emergence maturation of the eye of the adult black carpet beetleAttagenus megatoma (Fab.): An electron microscope study. J. Morph.130, 103–128 (1970)

    Google Scholar 

  • Chu, Norris, D.M.: Ultrastructure of the compound eye of the haploid male beetle,Xyleborus fenugineus. Cell. Tiss. Res.168, 315–324 (1976)

    Google Scholar 

  • Chu, H., Norris, D.M., Carlson, S.D.: Ultrastructure of the compound eye of the diploid female beetle,Xyleborus ferrugineux. Cell Tiss. Res.165, 23–36 (1975)

    Google Scholar 

  • Crowson, R.A.: The natural classification of the families of Coleoptera. Middlesex: Classey 1967

    Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool.92, 465–539 (1909)

    Google Scholar 

  • Eckert, M.: Hell-Dunkel-Adaptation in aconen Appositionsaugen der Insekten. Zool. Jb. Physiol.74, 102–120 (1968)

    Google Scholar 

  • Elofsson, R.: Rhabdom adaptation and its phylogenetic significance. Zool. Scripta5, 97–101 (1976)

    Google Scholar 

  • Friederichs, H.: BeitrÄge zur Morphologie und Physiologie der Sehorgane der Cicindeliden. Z. Morph. ökol. Tiere21, 1–172 (1931)

    Google Scholar 

  • Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden, 195 S. Göttingen: Vandenhoek u. Ruprecht 1879

    Google Scholar 

  • Hennig, W.: Phylogenetic systematics. Urbana-Chicago-London: University of Illinois Press 1966

    Google Scholar 

  • Home, E.M.: Centrioles and associated structures in the retinula cells of insect eyes. Tiss. and Cell4, 227–234 (1972)

    Google Scholar 

  • Home, E.M.: Ultrastructural studies of development and light-dark adaptation of the eye ofCoccinella septempunctata L., with particular reference to ciliary structures. Tiss. and Cell7, 703–722 (1975)

    Google Scholar 

  • Home, E.M.: The fine structure of some carabid beetle eyes, with particular reference to ciliary structures in the retinula cells. Tiss. and Cell8, 311–333 (1976)

    Google Scholar 

  • Horridge, G.A.: The eye ofDytiscus (Coleoptera). Tiss. and Cell1, 425–442 (1969a)

    Google Scholar 

  • Horridge, G.A.: The eye of the fireflyPhoturis. Proc. Roy. Soc. Lond. B171, 445–463 (1969b)

    Google Scholar 

  • Horridge, G.A.: Arthropod receptor optics. In: Photoreceptor optics (A.W. Snyder, R. Menzel, eds.), pp. 459–478. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Horridge, G.A., Giddings, C.: Movement on light-dark adaptation in beetle eyes of the neuropteran type. Proc. Roy. Soc. Lond. B179, 73–85 (1971)

    Google Scholar 

  • Jacobs, W., Renner, M.: Taschenlexikon zur Biologie der Insekten. Stuttgart: Fischer 1974

    Google Scholar 

  • Joannides, A.C., Horridge, G.A.: The organization of visual fields in the hemipteran acone eye. Proc. Roy. Soc. Lond. B190, 373–391 (1975)

    Google Scholar 

  • Jörschke, H.: Die Facettenaugen der Orthopteren und Termiten. Z. wiss. Zool.111, 153–280 (1914)

    Google Scholar 

  • Kirchhoffer, O.: Untersuchungen über die Augen pentamerer KÄfer. Arch. Biontol.2, 235–290 (1908)

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. Fortschr. Zool.21, 229–257 (1972/73)

    Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im KomplexaugevonMusca. Kybernetik5, 47–52 (1968)

    PubMed  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges vonMusca. Kybernetik6, 13–22 (1969)

    PubMed  Google Scholar 

  • Langer, H., Schneider, L.: Zur Struktur und Funktion offener Rhabdome in Facettenaugen. Zool. Anz., Suppl. 33, Verh. Zool. Ges.1969, 494–503 (1969)

    Google Scholar 

  • Laughlin, S. B., Menzel, R., Snyder, A.W.: Membranes, dichroism and receptor sensitivity. In: Photoreceptor Optics (A.W. Snyder, R. Menzel, eds.), pp. 237–259. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Lüdtke, H.: Retinomotorik und AdaptationsvorgÄnge im Auge des Rückenschwimmers (Notonecta glauca L.). Z. vergl. Physiol.35, 129–152 (1953)

    Google Scholar 

  • Menzel, R., Blakers, M.: Functional organisation of an insect commatidium with fused rhabdom. Cytobiol.11, 279–298 (1975)

    Google Scholar 

  • Menzel, R., Snyder, A.W.: Polarised light detection in the bee,Apis mellifera. J. comp. Physiol.88, 247–270 (1974)

    Google Scholar 

  • Meyer-Rochow, V.B.: The eyes ofCreophilus erythrocephalus F. andSartallus signatus Sharp (Staphylonidae: Coleoptera). Z. Zellforsch.133, 59–86 (1972)

    PubMed  Google Scholar 

  • Meyer-Rochow, V.B.: A tri-directional microvillus orientation in the mono-cellular, distal rhabdom of a nocturnal beetle. Cytobiol.13, 476–481 (1976)

    Google Scholar 

  • Meyer-Rochow, V.B., Horridge, G.A.: The eye ofAnoplognathus (Coleoptera, Scarabaeidae). Proc. R. Soc. Lond. B188, 1–30 (1975)

    PubMed  Google Scholar 

  • Schröer, W.-D.: Zum Mechanismus der Analyse polarisierten Lichtes beiAgelenagracilens C.L. Koch (Araneae, Agelenidae). I. Die Morphologie der Retina der vorderen Mittelaugen (Hauptaugen). Z. Morph. Tiere79, 215–231 (1974)

    Google Scholar 

  • Schröer, W.-D.: Polariastionsempfindlichkeit rhabdomerialer Systeme in den Hauptaugen vonAgelena graciluens (Araneae: Agelenidae). Ent. Germ.3, 88–92 (1976)

    Google Scholar 

  • Seitz, G.: Bau und Funktion des Komplexauges der Schmei\fliege. Naturwiss.58, 258–265 (1971)

    PubMed  Google Scholar 

  • Shelton, P.M.J., Lawrence, P.A.: Structure and development of ommatidia inOncopeltus fasciatus. J. Embryol. exp. Morph.32, 337–353 (1974)

    PubMed  Google Scholar 

  • Snyder, A.W.: Photoreceptor optics. — Theoretical principles. In: Photoreceptor Optics (A.W. Snyder, R. Menzel, eds.), pp. 38–55. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

  • Sotavalta, O., Tuurala, O., Oura, A.: On the structure and photomechanical reactions of the compound eyes of craneflies (Tipulidae, Limnobiidae). Ann. Acad. Sci. Fenn. A IV62, 1–14 (1962)

    Google Scholar 

  • Suzuki, K.: Comparative morphology and evolution of the hind wing venation of the family Chrysomelidae (Coleoptera). I. Homology and nomenclature of the wing venation in relation to the allied families. KontyÚ37, 32–40 (1969)

    Google Scholar 

  • Tuurala, O.: Bau und photomechanische Erscheinungen im Auge einiger Chironomiden (Dipt.). Ann. Ent. Fenn.29, 209–217 (1963)

    Google Scholar 

  • Wachmann, E., Schröer, W.-D.: Zur Morphologie des Dorsal- und Ventralauges des TaumelkÄfersGyrinus substriatus (Steph.). Zoomorphologie82, 43–61 (1975)

    Google Scholar 

  • Wada, S., Schneider, G.: Eine Pupillenreaktion im Ommatidium vonTenebrio molitor. Naturwiss.54, 542 (1967)

    PubMed  Google Scholar 

  • Walcott, B.: Cell movement on light adaptation in the retina ofLethocerus (Belostomatidae, Hemiptera). Z. vergl. Physiol.74, 1–16 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr.V.Schwartz (Tübingen), meinem verehrten Lehrer, zum 70. Geburtstag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachmann, E. Vergleichende Analyse der feinstrukturellen Organisation offener Rhabdome in den Augen der Cucujiformia (lnsecta, Coleoptera), unter besonderer Berücksichtigung der Chrysomelidae. Zoomorphologie 88, 95–131 (1977). https://doi.org/10.1007/BF01880649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880649

Navigation