Skip to main content
Log in

Identification of nucleotides critical for activity of the Pseudomonas putida catBC promoter

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Pseudomonas putida utilizes the catBC operon, which encodes cis,cis-muconate lactonizing enzyme I (MLEI; EC 5.5.1.1) and muconolactone isomerase (MI; EC 5.3.3.4), for growth on benzoate as a sole carbon source. This operon is positively regulated, and the promoter is located 64 bp upstream of the catB translational start site. Using site-specific mutagenesis, we identified nucleotides that influenced the induction of this promoter. Promoter activity was monitored with the promoter probe vector pKT240. Transcription of mRNA from mutant promoters was determined by primer extension mapping. Comparison of the initiation start site of mutant promoters with that of the wild-type promoter identified a single functional promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aph :

aminoglycoside phosphotransferase gene

bp :

base pairs

MI:

muconolactone isomerase

MLEI:

cis,cis-muconate lactonizing enzyme I

BSM:

basal salts medium

References

  • Aldrich TL, Chakrabarty AM (1988) Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida. J Bacteriol 170:1297–1304

    Google Scholar 

  • Aldrich TL, Frantz B, Gill JF, Kilbane JJ, Chakrabarty AM (1987) Cloning and complete nucleotide sequence determination of the catB gene encoding cis,cis-muconate lactonizing enzyme. Gene 52:185–195

    Google Scholar 

  • Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39:440–450

    Google Scholar 

  • Bagdasarian MM, Amann E, Lurz R, Ruckert B, Bagdasarian M (1983) Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled expression vectors. Gene 26:273–282

    Google Scholar 

  • Carter P, Bedouelle H, Waye MMY, Winter G (1985) Oligonucleotide site-directed mutagenesis in M13. An experimental manual. Anglian Biotechnology, Essex, UK, p 14

    Google Scholar 

  • Chakrabarty AM, Karns JS, Kilbane JJ, Chatterjee DK (1984) Selective evolution of genes for enhanced degradation of persistent, toxic chemicals. In: Arber W, Illmensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, UK, pp 43–53

    Google Scholar 

  • Cook AM, Grossenbacher H, Hutter R (1983) Isolation and cultivation of microbes with biodegradative potential. Experientia 39:1191–1198

    Google Scholar 

  • Dairi T, Inokuchi K, Mizuno T, Mizushima S (1985) Positive control of transcription initiation in Escherichia coli. A base substitution at the Pribnow box renders ompF expression independent of a positive regulator. J Mol Biol 184:1–6

    Google Scholar 

  • Deretic V, Gill JF, Chakrabarty AM (1987a) Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15:4567–4581

    Google Scholar 

  • Deretic V, Gill JF, Chakrabarty AM (1987b) Alginate biosynthesis: a model system for gene regulation and function in Pseudomonas Bio/Technology 5:469–477

    Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Google Scholar 

  • Frantz B, Chakrabarty AM (1986) Degradative plasmids in Pseudomonas. In: Sokatch JR (ed) The bacteria, Vol. X. The biology of Pseudomonas. Academic Press, NY, pp 295–323

    Google Scholar 

  • Frantz B, Chakrabarty AM (1987) Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci USA 84:4460–4464

    Google Scholar 

  • Frantz B, Ngai KL, Chatterjee DK, Ornston LN, Chakrabarty AM (1987) Nucleotide sequence and expression of clcD, a plasmid-borne dienelactone hydrolase gene from Pseudomonas. J Bacteriol 169:704–709

    Google Scholar 

  • Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228:135–142

    Google Scholar 

  • Grant CCR, Vasil ML (1986) Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa. J Bacteriol 168:1451–1456

    Google Scholar 

  • Harder W (1981) Enrichment and characterization of degrading organisms. In: Leisinger T, Cook AM, Hutter R, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London, pp 77–96

    Google Scholar 

  • Inouye S, Nakazawa A, Nakazawa T (1984a) Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene 29:323–330

    Google Scholar 

  • Inouye S, Ebina Y, Nakazawa A, Nakazawa T (1984b) Sequence surrounding transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proc Natl Acad Sci USA 81:1688–1691

    Google Scholar 

  • Inouye S, Nakazawa S, Nakazawa T (1985) Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J Bacteriol 163:863–869

    Google Scholar 

  • Inouye S, Asai Y, Nakazawa A, Nakazawa T (1986) Nucleotide sequence of a DNA segment promoting transcription in Pseudomonas putida. J Bacteriol 166:739–745

    Google Scholar 

  • Johnson K, Parker ML, Lory S (1986) Nucleotide sequence and transcription initiation site of two Pseudomonas aeruginosa pilin genes. J Biol Chem 261:15703–15708

    Google Scholar 

  • Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • McClure WR (1985) Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204

    Google Scholar 

  • Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984) Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J 3:2461–2466

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321

    Google Scholar 

  • Minton NP, Clark LE (1985) Identification of the promoter of the Pseudomonas gene coding for carboxypeptides G2. J Mol Appl Genet 3:26–35

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Google Scholar 

  • Ornston LN, Stanier RY (1964) Mechanisms of β-ketoadipate formation by bacteria. Nature 204:1279–1283

    Google Scholar 

  • Raibaud O, Schwartz M (1984) Positive control of transcription initiation in bacteria. Annu Rev Genet 18:173–206

    Google Scholar 

  • Reznikoff WS, Siegele DA, Cowing DW, Gross CA (1985) The regulation of transcription initiation in bacteria. Annu Rev Genet 19:355–387

    Google Scholar 

  • Rothmel RK, LeClerc JE (1989) Mutational analysis of the lac regulatory region: Second-site changes that activate mutant promoters. Nucleic Acids Res, in press

  • Schell MA (1986) Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc Natl Acad Sci USA 83:369–373

    Google Scholar 

  • Wheelis ML, Ornston LN (1972) Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: delection mapping of cat mutations. J Bacteriol 109:790–795

    Google Scholar 

  • Wheelis ML, Stanier RY (1970) The genetic control of dissimilatory pathways in Pseudomonas putida. Genetics 66:245–266

    Google Scholar 

  • Zoller MJ, Smith M (1984) Ongonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single stranded DNA template. DNA 3:479–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrich, T.L., Rothmel, R.K. & Chakrabarty, A.M. Identification of nucleotides critical for activity of the Pseudomonas putida catBC promoter. Molec Gen Genet 218, 266–271 (1989). https://doi.org/10.1007/BF00331277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331277

Key words

Navigation