Skip to main content
Log in

Chromosomal assignment of a large tRNA gene cluster (tRNALeu, tRNAGln, tRNALys, tRNAArg, tRNAGly) to 17p13.1

  • Short Communications
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A cluster of tRNA genes (tRNA LeuUAG , tRNA GlnCUG , tRNA LysUUU , tRNA ArgUCU ) and an adjacent tRNA GlyGCC have been assigned to human chromosome 17p12–p13.1 by in situ hybridization using a 4.2 kb human DNA fragment for tRNALeu, tRNAGln, tRNALys, tRNAArg, and, for tRNAGly, 1.3 kb and 0.58 kb human DNA fragments containing these genes as probes. This localization was confirmed and refined to 17p13.100–p13.105 using a somatic cell hybrid mapping panel. Preliminary experiments with the biotiny lated tRNA Leu, Gln, Lys, Arg probe and metaphase spreads from other great apes suggest the presence of a hybridization site on the long arm of gorilla (Gorilla gorilla) chromosome 19 and the short arm of orangutan (Pongo pygmaeus) chromosome 19 providing further support for homology between HSA17, GGO19 and PPY19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Boyd E, Theriault A, Goddard JP, Kalaitsidaki M, Spathas DH, Connor JM (1989) Chromosomal assignment of a glutamic acid transfer RNA (tRNAGlu) gene to 1p36. Hum Genet 81:153–156

    Google Scholar 

  • Buckland RA (1989) Genomic organisation of the human asparagine transfer RNA genes: localisation to the U1 RNA gene and class I pseudogene repeat units. Am J Hum Genet 45:283–295

    Google Scholar 

  • Doran JL, Bingle WH, Roy KL (1988) Two human genes encoding tRNAGly. Gene 65:329–336

    Google Scholar 

  • Garson JA, Berghe JA van den, Kemshead JT (1987) Novel nonisotopic in situ hybridization technique detects small (1 kb) unique sequences in routinely G-banded human chromosomes: fine mapping of N-myc and beta-NGF genes. Nucleic Acids Res 15:4761–4770

    Google Scholar 

  • Goddard JP, Squire M, Bienz M, Smith JD (1983) A human tRNAGlu gene of high transcriptional activity. Nucleic Acids Res 11:2551–2562

    Google Scholar 

  • Hatlen L, Attardi G (1971) Proportion of HeLa cell genome complementary to transfer RNA and 5S RNA. J Mol Biol 56:535–553

    Google Scholar 

  • ISCN (1985) An international system for human cytogenetic nomenclature. Harnden DG, Klinger HP (eds) Published in collaboration with Cytogenet Cell Genet. Karger, Basel

    Google Scholar 

  • Ledbetter DH, Ledbetter SA, van Tuinen P, Summers KM, Robinson TJ, Nakamura Y, Wolff R, White R, Barker DF, Wallace MR, Collins FS, Dobyns WB (1989) Molecular dissection of a contiguous gene syndrome: frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated „island” in the Miller-Dieker chromosome region. Proc Natl Acad Sci USA 86:5136–5140

    Google Scholar 

  • Lindgren V, Bernstein LB, Weiner AM, Franke U (1985) Human VI small nuclear RNA pseudogenes do not map to the site of the VI genes in 1p36 but are clustered in 1q12–q22. Mol Cell Biol 5:2172–2180

    Google Scholar 

  • McBride OW, Melini R, Hatfield D (1987) Opal suppressor phosphoserine tRNA gene and pseudogene are located on human chromosomes 19 and 22 respectively. J Biol Chem 262:11163–11166

    Google Scholar 

  • McBride OW, Pirtle IL, Pirtle RM (1989) Localization of three DNA segments encompassing tRNA genes to human chromosomes 1, 5, and 16: proposed mechanism and significance of tRNA gene dispersal. Genomics 5:561–573

    Google Scholar 

  • McLaren A, Goddard JP (1986) Nucleotide sequence of a human tRNALeu gene. Nucleic Acids Res 14:5938

    Google Scholar 

  • Naylor SL, Sakaguchi AY, Shows TB, Grzeschik K-H, Holmes M, Zasloff M (1983) Two non-allelic tRNAMet genes are located in the p23-q12 region of human chromosome 6. Proc Natl Acad Sci USA 80:5027–5031

    Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    Google Scholar 

  • Olson S, Pirtle IL, Pirtle RM, McBride OW (1987) Chromosomal mapping of a cluster of transfer RNA genes to human chromosome 14. Am J Hum Genet 41 [Suppl 3]: A 180

    Google Scholar 

  • Pirtle IL, Shortridge RD, Pirtle RM (1986) Nucleotide sequence and transcription of a human glycine tRNAGCC and nearby pseudogene. Gene 43:155–167

    Google Scholar 

  • Roy KL, Cooke H, Buckland R (1982) Nucleotide sequence of a segment of human DNA containing three tRNA genes. Nucleic Acids Res 10:7313–7322

    Google Scholar 

  • Shortridge RD, Pirtle IL, Pirtle RM (1985) Nucleotide sequence and transcription of a gene encoding human tRNAGly. Gene 33:269–277

    Google Scholar 

  • van Tuinen P, Rich DC, Summers KM, Ledbetter DH (1987) Regional mapping panel for human chromosome 17: application to neurofibromatosis type 1. Genomics 1: 374–381

    Google Scholar 

  • van Tuinen P, Dobyns WB, Rich DC, Summers KM, Robinson TJ, Nakamura Y, Ledbetter DH (1988) Molecular detection of microscopic and submicroscopic deletions associated with the Miller-Dieker syndrome. Am J Hum Genet 43:587–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, N., Goddard, J.P., Ledbetter, D.H. et al. Chromosomal assignment of a large tRNA gene cluster (tRNALeu, tRNAGln, tRNALys, tRNAArg, tRNAGly) to 17p13.1. Hum Genet 87, 226–230 (1991). https://doi.org/10.1007/BF00204190

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204190

Keywords

Navigation