Skip to main content
Log in

System-specific distribution of zinc in the chick brain

A light- and electron-microscopic study using the Timm method

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The brain of young domestic chicks was investigated using a Timm sulfide silver method. Serial Vibratome sections were analyzed under the light microscope, and the localization of zinc-positive structures in selected areas was determined at the ultrastructural level. Both strong and differential staining was visible in the avian telencephalon whereas most subtelencephalic structures showed a pale reaction. The highest staining intensity was found in the nonprimary sensory regions of the telencephalon such as the hyperstriatum dorsale, hyperstriatum ventrale, hippocampus, palaeostriatum augmentatum, lobus parolfactorius and caudal parts of neostriatum. There was an overall gradient of staining intensity in neostriatal areas from rostral to caudal with the heaviest zinc deposits in the caudal neostriatum. Primary sensory projection areas, such as the ectostriatum (visual), hyperstriatum intercalatum superius (visual), nucleus basalis (beak representation), the input layer L2 of the auditory field L and the somatosensory area rostral to field L were selectively left unstained. Fiber tracts throughout the brain were free of zinc deposits except for glial cells. In electron micrographs of stained regions, silver grains were localized in some presynaptic boutons of asymmetric synapses (Gray type I), within the cytoplasm of neuronal somata and sporadically in the nucleus. The possible involvement of zinc in synaptic transmission and other processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac :

Nucleus accumbens

Ad :

Archistriatum dorsale

Ai :

Archistriatum intermedium

Am :

Archistriatum mediale

Ap :

Archistriatum posterior

APH :

Area parahippocampalis

BAS :

Nucleus basalis

BO :

Bulbus olfactorius

Cb :

Cerebellum;

CbI :

Nucleus cerebellaris internus

CbM :

Nucleus cerebellaris intermedius

CDL :

Area corticoidea dorsolateralis

CPi :

Cortex piriformis

CT :

Commissura tectalis

DMP :

Nucleus dorsomedialis posterior thalami

E :

Ectostriatum

H :

Hyperstriatum

HA :

Hyperstriatum accessorium

HD :

Hyperstriatum dorsale

HIS :

Hyperstriatum intercalatum superius

Hp :

Hippocampus

HV :

Hyperstriatum ventrale

ICo :

Nucleus intercollicularis

Ipc :

Nucleus isthmi, pars parvocellularis

L :

Lingula

L 1, 2, 3 :

Field L

La :

Nucleus laminaris

LFM :

Lamina frontalis suprema

LFS :

Lamina frontalis superior

LH :

Lamina hyperstriatica

LMD :

Lamina medullaris dorsalis

LNH :

Rostrolateral neostriatum/Hyperstriatum ventrale

LPO :

Lobus parolfactorius

M :

Medulla

MLd :

Nucleus mesencephalicus lateralis, pars dorsalis

MNH :

Rostromedial neostriatum/Hyperstriatum ventrale

N :

Neostriatum

NC :

Neostriatum caudale

NEB :

Nucleus of ectostriatal belt

NHA :

Nucleus of HA

PA :

Palaeostriatum augmentatum

Pap :

Nucleus papillioformis

PL :

Nucleus pontis lateralis

PP :

Palaeostriatum primitivum

RP :

Nucleus reticularis pontis caudalis

Rt :

Nucleus rotundus

S :

Nucleus septalis

SS :

Somatosensory area

TeO :

Tectum opticum

Tn :

Nucleus taeniae

TPO :

Area temporoparieto-occipitalis

V :

Ventricle

Va :

Vallecula

References

  • Aniksztejn L, Charton G, Ben-Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res 404:58–64

    Google Scholar 

  • Ariens-Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Macmillan, New York

    Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Google Scholar 

  • Barber RP, Vaughn JE, Wimer RE, Wimer CC (1974) Geneticallyassociated variations in the distribution of dentate granule cell synapses upon the pyramidal cell dendrites in mouse hippocampus. J Comp Neurol 156:417–434

    Google Scholar 

  • Boeker EA, Snell EE (1972) Amino acid decarboxylases. The Enzymes 11:217–253

    Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the Guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121

    Google Scholar 

  • Bonke D, Scheich H, Langner G (1979) Responsiveness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. I. Tonotopy and functional zones of field L. J Comp Physiol 132:243–255

    Google Scholar 

  • Brunk U, Brun A, Sköld G (1968) Histochemical demonstration of heavy metals with the sulfide-silver method. A methodological study. Acta Histochem 31:345–357

    Google Scholar 

  • Casini G, Bingman VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-proline. J Comp Neurol 245:454–470

    Google Scholar 

  • Cassell MD, Brown MW (1984) The distribution of Timm's stain in the nonsulphide-perfused human hippocampal formation. J Comp Neurol 222:461–471

    Google Scholar 

  • Chafetz MD (1986) Timm's method modified for human tissue and compatible with adjacent section histofluorescence in the rat. Brain Res Bull 16:19–24

    Google Scholar 

  • Charton G, Rovira C, Ben-Ari Y, Leviel V (1985) Spontaneous and evoked release of endogenous zinc in the hippocampal mossy fiber zone of the rat in situ. Exp Brain Res 58:202–205

    Google Scholar 

  • Csermely P, Szamel M, Resch K, Somogyi J (1988) Zinc can increase the activity of protein kinase c and contributes to its binding to plasma membranes in T-lymphocytes. J Biol Chem 263:6487–6490

    Google Scholar 

  • Cunningham-Rundles S, Cunningham-Rundles WF (1988) Zinc modulation of immune response. Nutr Immunol:197–214

  • Danscher G (1981) Histochemical demonstration of heavy metals. Histochemistry 71:1–16

    Google Scholar 

  • Danscher G, Haug FMS, Fredens K (1972) Effect of diethydithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm's sulphide stain for ‘Heavy’ metals in DEDTC treated rats. Exp Brain Res 16:521–532

    Google Scholar 

  • Danscher G, Fjerdingstad EJ, Fjerdingstad E, Fredens K (1976) Heavy metal content in subdivisions of the rat hippocampus (zinc, lead, copper). Brain Res 112:442–446

    Google Scholar 

  • Ebadi M, Itoh M, Bifano J, Wendt K, Earle A (1981) The role of zink in pyridoxal phosphate mediated regulation of glutamic acid decarboxylase in brain. Int J Biochem 13:1107–1112

    Google Scholar 

  • Farkas I, Szerdahelyi P, Kasa P (1988) An indirect method for quantitation of cellular zinc content of Timm-stained cerebellar samples by energy dispersive X-ray microanalysis. Histochemistry 89:493–497

    Google Scholar 

  • Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 273:335–339

    Google Scholar 

  • Frederickson CJ, Hernandez MD, Goik SA, Morton JD, Mc Ginty JF (1988) Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: A histofluorescence study. Brain Res 446:383–386

    Google Scholar 

  • Frederickson CJ, Hernandez MD, McGinty (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480:317–321

    Google Scholar 

  • Friedman B, Price JL (1984) Fiber systems in the olfactory bulb and cortex: a study in adult and developing rats, using the Timm method with light and electron microscope. J Comp Neurol 223:88–109

    Google Scholar 

  • Gaarskjaer FB, Danscher G, West MJ (1982) Hippocampal mossy fibers in the regio superior of the European hedgehoge. Brain Res 237:79–90

    Google Scholar 

  • Haug FMS (1973) Heavy metals in the brain. A light microscopic study of the rat with Timm's sulphide silver method. Methodological considerations and cytological and regional staining patterns. Adv Anat Embryol Cell Biol 47:1–71

    Google Scholar 

  • Haug FMS, Blackstadt TW, Simonsen AH, Zimmer J (1971) Timm's sulphide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. J Comp Neurol 142:23–32

    Google Scholar 

  • Holm IE, Andreasen A, Danscher G, Perez-Clausell J, Nielsen H (1988) Quantification of vesicular zinc in the rat brain. Histochemistry 89:289–293

    Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columbia livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153

    Google Scholar 

  • Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann New York Acad Sci 167:164–179

    Google Scholar 

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columbia livia). Baltimore, John Hopkins Press

    Google Scholar 

  • Karten HJ, Hodos W (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columbia livia). J Comp Neurol 140:35–42

    Google Scholar 

  • Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973) Neuronal connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon and owl. J Comp Neurol 150:253–278

    Google Scholar 

  • Kieffer F (1988) Spurenelemente. Forsch Praxis 46:2

    Google Scholar 

  • Lopez-Garcia C, Martinez-Guijarro FJ, Berbel P, Garcia-Verdugo JM (1988) Long-spined polymorphic neurons of the medial cortex of lizards: A Golgi, Timm and electronmicroscopic study. J Comp Neurol 272:409–423

    Google Scholar 

  • Maier V, Scheich H (1983) Acoustic imprinting leads to differential 2-deoxyglucose uptake in the chick forebrain. Proc Natl Acad Sci USA 80:3860–3864

    Google Scholar 

  • Maier V, Scheich H (1987) Acoustic imprinting in Guinea fowl chicks: Age dependence of 14-C-deoxyglucose uptake of relevant forebrain areas. Dev Brain Res 31:15–27

    Google Scholar 

  • Means AR, O'Malley BW (1983) Calmodulin and calcium-binding proteins. Methods Enzymol. Academic Press, New York, pp 227–228

    Google Scholar 

  • Nixdorf BE, Bischof HJ (1982) Afferent connections of the ectostriatum and visual Wulst in the zebra finch (Taeniopygnia gutata castanotis Gould)- and HRP-study. Brain Res 248:9–17

    Google Scholar 

  • Pérez-Clausell J, Danscher G (1985) Intravascular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91–98

    Google Scholar 

  • Rose M (1914) Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. J Psychol Neurol 21:278–352

    Google Scholar 

  • Sato SM, Frazier JM, Goldberg AM (1984) The distribution and binding of zinc in the hippocampus. J Neurosci 4:1662–1670

    Google Scholar 

  • Scheich H (1983) Two columnar systems in the auditory neostriatum of the chick: Evidence from 2-deoxyglucose. Exp Brain Res 51:199–205

    Google Scholar 

  • Scheich H (1987) Neural correlates of auditory filial imprinting. J Comp Physiol A 161:605–619

    Google Scholar 

  • Scheich H, Braun K (1988) III. Physiological bases of the development of behavior. Synaptic selection and calcium regulation: common mechanisms of auditory filial imprinting and vocal learning in birds? Verb Dtsch Zool Ges 81:77–95

    Google Scholar 

  • Scheich H, Bonke BA, Bonke D, Langner G (1979) Functional organization of some auditory nuclei in the Guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res 204:17–27

    Google Scholar 

  • Schwegler H, Lipp HP, Loos H van der, Buselmaier W (1981) Individual hippocampal mossy fiber distribution in mice correlates with two-way avoidance performance. Science 214:817

    Google Scholar 

  • Smart TG, Constanti A (1983) Preand postsynaptic effects of zinc in vitro prepyriform neurons. Neurosci Lett 40:205–211

    Google Scholar 

  • Stewart GR, Frederickson CJ, Howell GA, Gage FH (1984) Cholinergic denervation-induced increase of chelatable zinc in mossy fiber region of the hippocampal formation. Brain Res 290:43–51

    Google Scholar 

  • Storm-Mathisen J (1976) Localization of transmitter candidates in the brain: The hippocampal formation as a model. Prog Neurobiol 36:41–57

    Google Scholar 

  • Storm-Mathisen J, Opsahl MW (1978) Aspartate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus. Neurosci Lett 9:65–70

    Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FMS, Otterson OP (1983) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301:517–520

    Google Scholar 

  • Theurich M, Müller CM, Scheich H (1984) 2-Deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian auditory neistriatum. Brain Res 322:157–161

    Google Scholar 

  • Timm F (1958) Zur Histologie des Ammonshorngebietes. Z Zellforsch 48:548–555

    Google Scholar 

  • Timm F (1962) Histochemische Lokalisation und Nachweis der Schwermetalle. Acta Histochem 3:142–148

    Google Scholar 

  • Ulinski PS (1983) Dorsal ventricular ridge. A treatise on forebrain organization in reptiles and birds. In: Northcut RG (ed) Wiley Series in Neurobiology. J Wiley and Sons, New York, pp 1–284

    Google Scholar 

  • Van Tienhoven A, Juhasz LP (1962) The chicken telencephalon, diencephalon and mesencephalon in stereotaxic coordinates. J Comp Neurol 118:185–197

    Google Scholar 

  • Voigt G (1952) Gewebseigene Keime (Primärkeime) bei histologischen Versilberungen. Z Mikrosk 61:1–8

    Google Scholar 

  • Wallhäußer E, Scheich H (1987) Acoustic imprinting leads to differential 2-deoxyglucose uptake and dendritic spine loss in the chick rostral forebrain. Dev Brain Res 31:29–44

    Google Scholar 

  • Webster KE (1974) Changing concepts of the organization of the central visual pathway in birds. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clerenders Press, Oxford, pp 258–298

    Google Scholar 

  • Wild JM (1987) The avian somatosensory system: Connections of regions of body representation in the forebrain of the pigeon. Brain Res 412:205–223

    Google Scholar 

  • Witkovsky P, Zeigler HP, Silver R (1973) The nucleus basalis of the pigeon: a single unit analysis. J Comp Neurol 147:119–128

    Google Scholar 

  • Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71:351–355

    Google Scholar 

  • Youngren OM, Phillips RE (1978) A stereotaxic atlas of the brain of the three-day-old Domestic chick. J Comp Neurol 181:567–600

    Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: Organization of afferent and efferent connections. Brain Res 31:313–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, H., Braun, K., Zuschratter, W. et al. System-specific distribution of zinc in the chick brain. Cell Tissue Res. 258, 247–257 (1989). https://doi.org/10.1007/BF00239445

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239445

Key words

Navigation