Skip to main content
Log in

Effect of salt loading and salt deprivation on the vasopressin and oxytocin content of the median eminence and the neural lobe in adrenalectomized rats

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In adrenalectomized rats the influence of salt loading or salt deprivation on the vasopressin and oxytocin content of the median eminence (ME) and the neural lobe (NL) was studied by means of various methods: (1) morphometric and microphotometric analysis of aldehyde fuchsin-stained sections of ME and NL; (2) immunohistochemical demonstration of neurophysin, oxytocin, and vasopressin in the ME and in the NL; (3) radioimmunological measurement of oxytocin and vasopressin in the ME and in the NL. Adrenalectomy in salt-substituted rats raised the vasopressin content of the outer layer of the ME (OLME) but had no influence on the amount of vasopressin in the inner layer of the ME and in the NL. Osmotic stimulation of adrenalectomized rats by hypertonic saline markedly diminished vasopressin and oxytocin in the inner layer of the ME and in the NL but did not, or only slightly reduced vasopressin in the OLME. Withdrawal of salt supplementation in adrenalectomized rats resulted in a decrease of plasma sodium and plasma volume. It did not change the vasopressin or oxytocin content of the inner layer of the ME and of the NL, but it was correlated with a decrease of vasopressin in the OLME. The present findings may suggest that vasopressin in the OLME is involved in salt and/or volume regulation by influencing the hypophysial-adrenal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agus ZS, Goldberg M (1971) Role of antidiuretic hormone in the abnormal water diuresis of anterior hypopituitarism in man. J Clin Invest 50:1478–1489

    Google Scholar 

  • Aizawa T, Yasuda N, Greer MA, Sawyer WH (1982) In vivo adrenocorticotropin-releasing activity of neurohypophyseal hormones and their analogs. Endocrinology 110:98–104

    Google Scholar 

  • Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: an immunohistochemical study. Brain Res 137:1–10

    Google Scholar 

  • Balment RJ, Chester-Jones I, Henderson IW, Oliver JA (1976) Effects of adrenalectomy and hypophysectomy on water and electrolyte metabolism in male and female rats with inherited hypothalamic diabetes insipidus (Brattleboro strain). J Endocrinol 71:193–217

    Google Scholar 

  • Baylis PH (1983) Posterior pituitary function in health and disease. Clin Endocinol Metab 12:747–770

    Google Scholar 

  • Bentley PJ, Scott WN (1978) The actions of aldosterone. In: Chester-Jones I, Henderson IW (eds) General, comparative and clinical endocrinology of the adrenal cortex, Vol. 2, London-New York-San Francisco: Academic Press, pp 497–564

    Google Scholar 

  • Bie P (1980) Osmoreceptors, vasopressin, and control of renal water excretion. Physiol Rev 60:961–1048

    Google Scholar 

  • Bock R (1972) Morphometrische Untersuchungen zum histologischen Nachweis des Corticotropin-Releasing Factor im Infundibulum der Ratte. Z Anat Entwickl Gesch 137:1–19

    Google Scholar 

  • Bock R, Jurna I (1977) Ipsilateral diminution of CRF-granules after unilateral hypothalamic lesions. Cell Tissue 185:215–229

    Google Scholar 

  • Bock R, Forstner RV, Mühlen K aus der, Stöhr PhA (1969) Beiträge zur funktionellen Morphologie der Neurohypophyse. III. Über die Wirkung einer Corticoid-oder ACTH-Behand-lung auf das Auftreten “gomoripositiver” Granula in der Zona externa infundibuli von Ratten und Mäusen nach beidseitiger Adrenalektomie oder Hypophysektomie. Z Zellforsch 96:142–150

    Google Scholar 

  • Bock R, Salland Th, Schwabedal PE (1976) Histochemical and immunohistochemical properties of the CRF-granules and other “Gomori-positive” substances of the rat. Histochemistry 46:81–105

    Google Scholar 

  • Bock R, Detzer K, Leicht E, Röder R (1980) Functional difference between “classical” neurosecretory material and vasopressin-like substances of the outer layer of the median eminence. Cell Tissue Res 212:257–277

    Google Scholar 

  • Bock R, Detzer K, Geiger A, Lang RE, Östermann E, Sinner G (1983) Effect of adrenalectomy and administration of hypertonic saline on the content of aldehyde fuchsin-positive neurosecretory material and posterior lobe hormones in the median eminence and the neural lobe of rats. Cell Tissue Res 228:127–138

    Google Scholar 

  • Brimble MJ, Dyball REJ (1977) Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol 271:253–271

    Google Scholar 

  • Brimble MJ, Dyball REJ, Forsling ML (1978) Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. J Physiol 278:69–78

    Google Scholar 

  • Brinkmann H, Bock R (1970) Quantitative Veränderungen “Go-mori-positiver” Substanzen in Infundibulum und Hypophysenhinterlappen der Ratte nach Adrenalektomie und Kochsalz-oder Durstbelastung. J Neurol Visc Relat 32:48–64

    Google Scholar 

  • Brinkmann H, Bock R (1973) Influence of various corticoids on the augmentation of “Gomori-positive” granules in the median eminence of the rat following adrenalectomy. Naunyn-Schmiedeberg's Arch Pharmacol 280:49–62

    Google Scholar 

  • Brinkmann H, Wittkowski W, Bock R (1975) Gomori-positive elementary granules in inner and outer layer of the infundibulum. Cell Tissue Res 163:503–508

    Google Scholar 

  • Bumpus FM, Sen S, Bravo EL, Shainoff JR (1982) New regulators of aldosterone secretion. In: F Mantero, EG Bigheri, CRW Edwards, Endocrinology of hypertension, London-New York. Academic Press, pp 19–22

    Google Scholar 

  • Burlet A, Chateau M, Czernichow P (1979) Infundibular localization of vasopressin, oxytocin and neurophysins in the rat; its relationships with corticotrope function. Brain Res 168:275–286

    Google Scholar 

  • Burlet A, Tonon MCh, Tankosic P, Coy D, Vaudry H (1983) Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophysial peptides in the brain of Brattleboro and Long-Evans rats. Neuroendo-crinology 37:64–72

    Google Scholar 

  • Conaglen JV, Donald RA, Espiner EA, Livesey JH, Nicholls MG (1984) The effect of ovine corticotropin-releasing factor on catecholamine, vasopressin, and aldosterone secretion in normal man. J Clin Endocrinol Metab 58:463–466

    Google Scholar 

  • Davis JO (1975) Regulation of aldosterone secretion. In: Handbook of Physiology, section 7 (Endocrinology), Vol VI (Adrenal gland), Washington DC: American Physiological Society pp 77–106

    Google Scholar 

  • DeBold CR, Sheldon WR, DeCherney G St, Jackson RV, Alexander AN, Vale W, Rivier J, Orth DN (1984) Arginine vasopressin potentiates adrenocorticotropin-release induced by ovine corticotropin-releasing factor. J Clin Invest 73:533–538

    Google Scholar 

  • Dierickx K, Vandesande F, deMey J (1976) Identification, in the external region of the rat median eminence, of separate neurophysin-vasopressin and neurophysin-oxytocin containing nerve fibres. Cell Tissue Res 168:141–151

    Google Scholar 

  • Dornhorst A, Carlson DE, Seif SM, Robinson AG, Zimmerman EA, Gann DS (1981) Control of release of adrenocorticotropin and vasopressin by the supraoptic and paraventricular nuclei. Endocrinology 108:1420–1424

    Google Scholar 

  • Dubé D, Leclerc R, Pelletier G (1976) Electron microscopic immunohistochemical localization of vasopressin and neurophysin in the median eminence of normal and adrenalectomized rats. Am J Anat 147:103–108

    Google Scholar 

  • Edwards CRW, Al-Dujaili AS, Boscaro M, Gow I, Williams BC (1982) Peptidergic and monoaminergic regulation of aldosterone secretion. In: F Mantero, EG Biglieri, CRW Edwards (eds) Endocrinology of hypertension, London-New York: Academic Press, pp 11–18

    Google Scholar 

  • Friedman SM, Sreter FA, Nakashima M, Friedman CL (1962) Adrenal cortex and neurohypophyseal deficiency in salt and water homeostasis of rats. Am J Physiol 203:697–701

    Google Scholar 

  • Gaunt R, Chart JJ (1962) Mineralocorticoid action of adrenocortical hormones. In: O Eichler, A Farah (eds) Handbuch der experimentellen Pharmakologie, Bd. XIV, Teil I, The adrenocortical hormones. Their origin, chemistry, physiology, and pharmacology. Part I (Subed. HW Deane), Berlin-Göttingen-Heidelberg: Springer, pp 514–569

    Google Scholar 

  • George JM (1976) Vasopressin and oxytocin are depleted from rat hypothalamic nuclei after oral hypertonic saline. Science 193:146–148

    Google Scholar 

  • Giguere V, Labrie F (1982) Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture. Endocrinology 111:1752–1754

    Google Scholar 

  • Gill JR Jr, Gann DS, Bartter FC, Ambrose IM, Smith GW (1962) Restoration of water diuresis in addisonian patients by expansion of the volume of extracellular fluid. J Clin Invest 41:1078–1085

    Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the CRF is potentiated several times by vasopressin. Nature 299:355–356

    Google Scholar 

  • Ginsburg M (1954) The secretion of antidiuretic hormone in response to haemorrhage and the fate of vasopressin in adrenal-ectomized rats. J Endocrinol (Lond) 11:165–176

    Google Scholar 

  • Green HH, Harrington AR, Valtin H (1970) On the role of anti-diuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing the inhibition. J Clin Invest 49:1724–1736

    Google Scholar 

  • Gregersen MI, Gibson JJ, Staed EA (1935) Plasma volume determination with dyes: errors in colorimetry use of blue dye T-1824. Am J Physiol 113:54–55

    Google Scholar 

  • Großkopf R (1976) Verfahren für photometrische Messungen mit Fernseh-Bildanalysegeräten. Microscop Acta 60:61–69

    Google Scholar 

  • Jones CW, Pickering BT (1969) The effects of water deprivation and sodium chloride inhibition on the hormone content of the neurohypophysis of the rat. J Physiol 203:449–458

    Google Scholar 

  • Kiss JZ, Mezey E, Skirboll L (1984) Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci USA 81:1854–1858

    Google Scholar 

  • Kleeman CR, Czaczkes JW, Cutter R (1964) Mechanisms of impaired water excretion in adrenal and pituitary insufficiency. IV. Antidiuretic hormone in primary and secondary adrenal insufficiency. J Clin Invest 43:1641–1650

    Google Scholar 

  • Lang RE, Rascher W, Unger Th, Ganten D (1981a) Reduced content of vasopressin in the brain of spontaneously hypertensive as compared to normotensive rats. Neurosci Lett 23:199–202

    Google Scholar 

  • Lang RE, Rascher W, Heil J, Unger Th, Wiedemann G, Ganten D (1981b) Angiotensin stimulates oxytocin release. Life Sci 29:1425–1428

    Google Scholar 

  • Laragh J, Selay JE (1973) The renin-angiotensin-aldosterone hormonal system and regulation of sodium, potassium, and blood pressure homeostasis. In: J Orloff, RW Berliner (eds) Handbook of Physiology section 8 (Renal Physiology), Washington DC: American Physiological Society, pp 831–908

    Google Scholar 

  • Lee TC, Wal B van der, Wied D de (1968) Influence of the anterior pituitary on the aldosterone secretory response to dietary sodium restriction in the rat. J Endocrinol (Lond) 42:465–475

    Google Scholar 

  • Livingstone A (1973) Ultrastructure of the rat neural lobe during recovery from hypertonic saline treatment. Z Zellforsch 137:361–374

    Google Scholar 

  • Matsuoka H, Mulrow PJ, Franco-Saenz R, Li CH (1981b) Stimulation of aldosterone production by β-melanotropin. Nature 291:155–156

    Google Scholar 

  • McCaa RE, Young DB, Guyten AC, McCaa CS (1974) Evidence for a role of an unidentified pituitary factor in regulation aldosterone secretion during altered sodium balance. Circ Res [Suppl] 1:34–35, 15–25

    Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1982) Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am J Anat 165:385–396

    Google Scholar 

  • Moses AM (1963) Adrenal-neurohypophysial relationships in the dehydrated rat. Endocrinology 73:230–236

    Google Scholar 

  • Müller W (1973) Das LEITZ-Textur-Analyse-System. LEITZ Mitt Wiss Techn [Suppl] 1:101–116

    Google Scholar 

  • Olschowka JA, O'Donohue TL, Müller GP, Jacobowitz DM (1982) Hypothalamic and extrahypothalamic distribution of CRF-like immunoreactive neurons in the rat brain. Neuroendocrinology 35:305–308

    Google Scholar 

  • Palkovits M, deJong W, deWied D (1974) Hypothalamic control of aldosterone production in sodium-deficient rats. Neuroendocrinology 14:297–309

    Google Scholar 

  • Pelletier G, Leclerc R, Dubé D (1976) Immunohistochemical localization of hypothalamic hormones. J Histochem Cytochem 24:864–871

    Google Scholar 

  • Recht LD, Hoffman DL, Haldar J, Silverman AJ, Zimmerman EA (1981) Vasopressin-concentrations in hypophysial portal plasma: Insiginificant reduction following removal of the posterior pituitary gland. Neuroendocrinology 33:88–90

    Google Scholar 

  • Reid IA, Schwartz J, Ben L, Maselli J, Keil LC (1983) Interactions between vasopressin and the renin-angiotensin system. Prog Brain Res 60:475–491

    Google Scholar 

  • Rhodes CH, Morell JI, Pfaff DW (1981) Changes in oxytocin content in the magnocellular neurons of the rat hypothalamus following water deprivation or estrogen treatment. Cell Tissue Res 216:47–55

    Google Scholar 

  • Rivier C, Vale W (1983a) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 113:939–942

    Google Scholar 

  • Rivier C, Vale W (1983b) Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305:325–327

    Google Scholar 

  • Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33:333–385

    Google Scholar 

  • Robinson AG, Seif SM, Verbalis JG, Brownstein MJ (1983) Quantitation of changes in the content of neurohypophyseal peptides in hypothalamic nuclei after adrenalectomy. Neuroendocrinology 36:347–350

    Google Scholar 

  • Roth KA, Weber E, Barchas JD (1982) Immunoreactive corticotropin releasing factor (CRF) and vasopressin are colocalized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31:1857–1860

    Google Scholar 

  • Sachs L (1968) Statistische Auswertungsmethoden. Berlin-Heidelberg-New York: Springer

    Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984a) Corticotropin-releasing factor: Co-expression within distinct subsets of oxytocin-, vasopressin-, and neurophysin-immunoreactive neurons in the hypothalamus of the male rat. J Neurosci 4:1118–1129

    Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984b) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81:1883–1887

    Google Scholar 

  • Schneider E, Blömer A, Bock R, Brinkmann H, Goslar HG (1974) Verhalten „Gomori-positiver” Granula im Infundibulum verschiedener Säugerspecies nach Adrenalektomie; zugleich ein Beitrag zur speciesdifferenten Enzymausstattung von Neurohypophyse und Ependym des III. Ventrikels. Acta Histochem 48:172–190

    Google Scholar 

  • Schrier RW, Berl T, Anderson RJ (1979) Osmotic and nonosmotic control of vasopressin release. Am J Physiol 236:F321-F332

    Google Scholar 

  • Schwabedal PE, Bock R, Winkler C (1975) Influence of adrenalectomy, total body x-irradiation and dexamethasone on the amount of CRF-granules and “classical” neurosecretory material in the rat neurohypophysis. Anat Embryol 148:267–278

    Google Scholar 

  • Schwabedal PE, Partenheimer U, Bock R (1976) Influence of sodium chloride on the amount of CRF-granules and “classical” neurosecretory material (NSM) in the neurohypophysis of bilaterally adrenalectomized rats. Anat Embryol 149:307–313

    Google Scholar 

  • Seybold V, Elde R, Hökfelt T (1981) Terminals of reserpine-sensitive vasopressin-neurophysin neurons in the external layer of the rat median eminence. Endocrinology 108:1803–1809

    Google Scholar 

  • Share L (1974) Blood pressure, blood volume, and the release of vasopressin. In: Handbook of Physiology. Sect. 7 vol. IV, part I, Washington D. C. USA: American Physiological Society, pp 243–255

    Google Scholar 

  • Share L, Travis RH (1970) Plasma vasopressin concentration in the adrenally insufficient dog. Endocrinology 86:196–201

    Google Scholar 

  • Share L, Travis RH (1971) Interrelationships between the adrenal cortex and the posterior pituitary. Fed Proc 30:1378–1382

    Google Scholar 

  • Silverman AJ (1976) Ultrastructural studies on the localization of neurohypophysial hormones and their carrier proteins. J Histochem Cytochem 24:816–827

    Google Scholar 

  • Sladek CD (1983) Regulation of vasopressin release by neurotransmitters, neuropeptides and osmotic stimuli. Prog Brain Res 60:71–90

    Google Scholar 

  • Sofroniew MV, Weindl A, Wetzstein R (1977) Immunoperoxidase staining of vasopressin in the rat median eminence following adrenalectomy and steroid substitution. Acta Endocrinol (K bh) [Suppl] 212:72

    Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Stilman MA, Recht LD, Rosario SL, Seif SM, Robinson AG, Zimmerman EA (1977) The effects of adrenalectomy and gluco-corticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinology 101:42–49

    Google Scholar 

  • Streeten DHP, Souma M, Ross GS, Miller M, Lewis R (1981) Action of cortisol introduced into the supraoptic nucleus, on vasopressin and antidiuresis during hypertonic saline infusion in conscious rhesus monkeys. Acta Endorinol 98:195–204

    Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    Google Scholar 

  • Tramu G, Pillez E (1982) Localization immunohistochimique des terminaisons nerveuses à corticoliberine (GRF) dans l'eminence mediane du cobaye et du rat. CR Acad Sci (Paris) 294:107–114

    Google Scholar 

  • Turkelson CM, Thomas CR, Arimura A, Chang D, Chang JK, Shimizu M (1982) In vitro potentiation of the activity of synthetic ovine corticotropin-releasing factor by arginine vasopressin. Peptides 1:111–113

    Google Scholar 

  • Ufferman RC, Schrier W (1972) Importance of sodium intake and mineralocorticoid hormone in the impaired water excretion in adrenal insufficiency. J Clin Invest 51:1639–1646

    Google Scholar 

  • Uhlich E, Weber P, Haslbeck R (1976) Angiotensin II and prostaglandin stimulated release of vasopressin-in vitro and in vivo experiments. In: W. Kaufmann, DK Krause, Central nervous control of Na+ balance-relations to the renin-angiotensin system, Stuttgart: Thieme, pp 64–69

    Google Scholar 

  • Valiquette G (1980) Posterior pituitary hormones and neurophysins. In: M. Motta: The endocrine functions of the brain, pp 386–417. New York: Raven Press

    Google Scholar 

  • Vandesande F, DeMey J, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tissue Res 151:187–200

    Google Scholar 

  • Vandesande F, Dierickx K, DeMey J (1977) The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 180:443–452

    Google Scholar 

  • Wakerly JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res 148:423–440

    Google Scholar 

  • Watkins WB, Schwabedal P, Bock R (1974) Immunohistochemical demonstration of a CRF-associated neurophysin in the external zone of the rat median eminence. Cell Tissue Res 152:411–421

    Google Scholar 

  • Yates FE, Russell SM, Dallman MF, Hedge GA, McCann SM, Dhariwal APS (1971) Potentiation by vasopressin of corticotrophin release induced by corticotrophin-releasing factor. Endocrinology 88:3–15

    Google Scholar 

  • Zimmerman EA, Silverman AJ (1983) Vasopressin and adrenal cortical interactions. Prog Brain Res 60:493–504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The study was supported by the Deutsche Forschungsgemeinschaft (Bo 392/6-51 and SFB 90, Cardiovasculäres System, A52). The morphometric measurements with the TAS plus were carried out at the Max-Planck-Institut für Psychiatrie, Munich, FRG. We are particularly indebted to Prof. G. W. Kreutzberg and Prof. P. Schubert for their help

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mink, D., Lang, R.E., Östermann, E. et al. Effect of salt loading and salt deprivation on the vasopressin and oxytocin content of the median eminence and the neural lobe in adrenalectomized rats. Cell Tissue Res. 246, 413–423 (1986). https://doi.org/10.1007/BF00215904

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215904

Key words

Navigation