Skip to main content
Log in

Serotonin-immunoreactive and dopamine-immunoreactive neurones in the terminal ganglion of the cricket, Acheta domestica: Light- and electron-microscopic immunocytochemistry

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The distribution and ultrastructure of serotonin- and dopamine-immunoreactive (5-HTi and DAi) neurones have been investigated in the terminal ganglion of the cricket, Acheta domestica, using a pre-embedding chopper technique. Special attention has been paid to the immunoreactive structures in the neuropil. 5-HTi structures are extensively distributed and densely packed throughout the 5 neuromeres of the terminal ganglion and originate from several interneurones and efferent neurones. In contrast, DAi fibres are distributed sparsely although they extend to all neuromeres of the ganglion and originate from 6 interneurons only. For both 5-HTi and DAi neurones characteristic axonal projections and branching patterns can be distinguished. The 5-HTi axons exhibit rich varicose arborizations, whereas DAi neurones possess fewer varicosities in the neuropil. Electron microscopy shows that 5-HTi varicosities contain small (∼ 60 nm) and large (∼ 100 nm) agranular vesicles, and large (∼ 100 nm) granular vesicles, whereas in DAi varicosities small (∼ 60 nm) agranular and large (∼ 100 nm) granular vesicles are seen. Both 5-HTi and DAi varicosities form synaptic contacts. We conclude that both serotonin and dopamine may be used as neurotransmitters in the terminal ganglion of the cricket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop CA, O'Shea M (1983) Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). J Neurobiol 14:251–269

    Article  CAS  PubMed  Google Scholar 

  • Cook IM, Eraker J, Anderson JR (1969) The effect of various biogenic amines on the activity of the foregut of the cockroach, Blaberus giganteus. J Insect Physiol 15:445–455

    Article  CAS  PubMed  Google Scholar 

  • Dambach M, Igelmund H (1983) Das Ei-Ablageverhalten von Grillen (Saltataria: Grylloida). Entomologia Generalis 8:267–281

    Google Scholar 

  • David JC, Coulon JF (1985) Octopamine in invertebrates. A review. Prog Neurobiol 24:141–185

    Article  CAS  PubMed  Google Scholar 

  • Davis NT (1985) Serotonin-immunoreactive visceral nerves and neurohemal system in the cockroach Periplaneta americana (L.). Cell Tissue Res 240:593–600

    Article  CAS  Google Scholar 

  • Dymond GR, Evans PD (1979) Biogenic amines in the nervous system of the cockroach, Periplaneta americana: Association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem 9:535–545

    Article  CAS  Google Scholar 

  • Edwards JS (19177) One organism, several brains: Evolution and development of the insect central nervous system. Ann N Y Acad Sci 299:59–1

    Google Scholar 

  • Edwards JS, Palka J (1974) The cerci and abdominal giant fibres of the house cricket Acheta domesticus. I. Anatomy and physiology of normal adults. Proc R Soc Lond [Biol] 185:83–103

    Article  CAS  Google Scholar 

  • Elekes K (1976) Electron microscope autoradiography of serotonin uptake in the ganglia of the fresh-water mussel, Anadonta cygnea L. Acta Biol Hung 27:183–189

    CAS  Google Scholar 

  • Elekes K (1978) Autoradiographic localization of monoamine uptake in the central nervous system of a marine mollusc (Mactra stultorum L., Pelecypoda). Neuroscience 3:49–58

    Article  CAS  Google Scholar 

  • Elekes K (1979) Light and electron microscopic autoradiography of 3H-dopamine uptake in the ganglia of the freshwater mussel, Anodonta cygnea L. Acta Biol Acad Sci Hung 30:223–234

    CAS  PubMed  Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473

    Article  CAS  Google Scholar 

  • Flanagan TRJ (1983) Monoaminergic innervation in a hemipteran nervous system: a whole-mount histofluorescence survey. In: Strausfeld NJ (ed) Functional Neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 317–330

    Google Scholar 

  • Geffard M, Buijs RM, Seguela P, Pool CW, LE Moal M (1984a) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165

    Article  CAS  PubMed  Google Scholar 

  • Geffard M, Kah O, Onteniente B, Seguela P, Le Moal M, Delaage M (1984b) Antibodies to dopamine: Radioimmunological study of specificity in relation to immunocytochemistry. J Neurochem 42:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Hiripi L, S-Rózsa K (1973) Fluorimetric determination of 5-hydroxytryptamine and catecholamines in the central nervous system and heart of Locusta migratoria migratorioides. J Insect Physiol 9:1481–1485

    Article  Google Scholar 

  • Hiripi L, S-Rózsa K (1981) Second messenger and monoamine receptors in the regulation of metamorphosis of Locusta migratoria migratorioides RF. In: S-Rózsa K (ed) Adv Physiol Sci, Vol 22, Neurotransmitters in invertebrates. Akadémiai Kiadó and Pergamon Press, Budapest Oxford pp 235–253

    Google Scholar 

  • Howes EA, McLaughlin BJ, Heslop P (1974) The autoradiographical association of fast transport material with dense-core vesicles in the central nervous system of Anodonta cygnea L. Cell Tissue Res 153:545–558

    Article  CAS  PubMed  Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–352

    Article  CAS  PubMed  Google Scholar 

  • Hustert R, Topel U (1986) Location and major postembryonic changes of identified 5-HT-immunoreactivc neurons in the terminal ganglion of the cricket (Acheta domesticus). Cell Tissue Res 245:615–621

    Article  Google Scholar 

  • Kiss T, Varanka I, Benedeczky I (1984) Neuromuscular transmission in the visceral muscle of locust oviduct. Neuroscience 12:300–322

    Article  Google Scholar 

  • Klemm N (1976) Histochemistry of putative transmitter substances in the insect brain. Progr Neurobiol 7:99–169

    Article  CAS  Google Scholar 

  • Klemm N (1983) Detection of serotonin-containing neurons in the insect nervous system by antibodies to 5-HT. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer Berlin Heidelberg New York Tokyo, pp 302–316

    Google Scholar 

  • Klemm N, Hustert R (1984) The distribution of catecholamines and 5-HT in the stomatogastric nervous system of orthopteroid insects. In: Vizi ES, Magyar K (eds) Regulation of transmitter function. Académiai Kiadó, Budapest, pp 537–540

    Google Scholar 

  • Klemm N, Steinbusch HWM, Sundler F (1984) Serotonin-immunoreactive neurons and their projections in the brain of the cockroach, Periplaneta americana. J Comp Neurol 225:387–395

    Article  CAS  PubMed  Google Scholar 

  • Klemm N, Hustert R, Cantera R, Nässel DR (1986) Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locust and crickets (Orthoptera, Insecta). Neuroscience 17:247–261

    Article  CAS  PubMed  Google Scholar 

  • Livingstone MS, Schaeffer SF, Kravitz EA (1981) Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: serotonin and octopamine are contained in different nerve endings. J Neurobiol 12:27–54

    Article  CAS  PubMed  Google Scholar 

  • Lutz EM, Tyrer NM, Altman JS, Turner J (1985) Some insect sensory neurons contain 5-hydroxytryptamin. Brain Res 325:353–356

    Article  CAS  PubMed  Google Scholar 

  • Mercer AR (1982) The effects of amines on behaviour and neuronal activity in the honey bee. In: Breed MD, Mitchener CD, Evans HE (eds) The biology of social insects. Westview, Press Boulder, pp 360–363

    Google Scholar 

  • Mercer AR, Menzel R (1982) The effect of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honey bee Apis mellifica. J Comp Physiol 145:363–368

    Article  CAS  Google Scholar 

  • Mercer AR, Mobbs PG, Davenport AP, Evans PD (1983) Biogenic amines in the brain of the honeybee Apis mellifica. l Tissue Res 234:655–677

    CAS  Google Scholar 

  • Miller TA (1979) Nervous versus neurohormonal control of insect heartbeat. Am Zool 19:77–86

    CAS  Google Scholar 

  • Myers PR (1974) Dopamine: Localization of uptake in the pedal ganglion of Quadrilla pustulosa (Pelecypoda). Tissue Cell 6:49–64

    Article  CAS  PubMed  Google Scholar 

  • Nässel DR, Elekes K (1984) Ultrastructural demonstration of serotonin-immunoreactivity in the nervous system of an insect (Calliphora erythrocephala). Neursci Lett 48:203–210

    Article  Google Scholar 

  • Nässel DR, Elekes K (1985) Serotonergic terminal in the neuron sheath of the blowfly nervous system: electron microscopical immunocytochemistry and 5,7-dihydroxytryptamine labelling. Neuroscience 15:293–307

    Article  PubMed  Google Scholar 

  • Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140

    Article  PubMed  Google Scholar 

  • Nässel DR, Laxmyr L (1983) Quantitative determination of biogenic amines and DOPA on the CNS of adult and larval blowflies Calliphora erythrocephala. Comp Biochem Physiol 75C:259–265

    Google Scholar 

  • Nässel DR, Meyer EP, Klemm N (1985) Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. J Comp Neurol 232:190–204

    Article  PubMed  Google Scholar 

  • Nishikawa N, Bennet GJ, Rua MA, Lu GW, Dubner R (1983) Immunocytochemical evidence for a serotoninergic innervation of dorsal column postsynaptic neurons in cat and monkey: Light and electron microscopic observations. Neuroscience 10:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Panov AA (1964) Correlation in the ontogenetic development of the central nervous system in the house cricket Gryllus domesticus L. and the mole cricket Gryllotalpa gryllotalpa L. (Orthoptera, Gryllidea). Ent Rev 45:179–185

    Google Scholar 

  • Pasik P, Pasik T, Pecci Saavedra J (1982) Immunocytochemical localization of serotonin at the ultrastructural level. J Histochem Cytochem 30:760–764

    CAS  PubMed  Google Scholar 

  • Pentreath VW, Berry MS (1975) Ultrastructure of the terminals of an identified dopamine-containing neurone marked by intracellular injections of radioactive dopamine. J Neurocytol 4:249–260

    Article  CAS  PubMed  Google Scholar 

  • Pentreath VW, Berry MS (1978) Radioautographic study of 5-hydroxytryptamine nerve terminals in the central ganglia of Planorbis corneus: comparison with other species and characteristics of serotoninergic terminal. J Neurocytol 7:443–459

    Article  CAS  PubMed  Google Scholar 

  • Robertson HA (1976) Octopamine, dopamine and noradrenaline content of the brain of the locust, Schistocerca gregaria. Experientia 32:552–553

    Article  CAS  PubMed  Google Scholar 

  • Rude SR, Coggeshal RE, van Orden LS (1969) Chemical and ultrastructural identification of 5-hydroxytryptamine in an identified neuron. J Cell Biol 41:832–854

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi DS, Murphey RK (1983) The equilibrium system of crickets: Physiology and morphology of an identified interneuron. Cell Tissue Res 216:79–96

    Google Scholar 

  • Schürmann FW, Klemm N (1984) Serotonin-immunoreactive neurons in the brain of the honeybee. J Comp Neurol 225:570–580

    Article  PubMed  Google Scholar 

  • Somogyi P, Takagi H (1982) A note on the use of picric acidparaformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience 7:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi-staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic bouton in the same material. Neuroscience 4:1805–1852

    Article  CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–41

    Article  CAS  PubMed  Google Scholar 

  • Sugawara R, Loher W (1986) Oviposition behaviour of the cricket Teleogryllus commodus: Observation of external and internal events. J Insect Physiol 32:179–188

    Article  Google Scholar 

  • Takeda S, Vieillemaringe J, Geffard M, Rémy C (19186) Imunohistological evidence of dopamine cells in the cephalic nervous system of the silkworm Bombyx mori. Co-existence of dopamine and α endorphin-like substance in neurosecretory cells of suboesophageal ganglion. Cell Tissue Res 243:125–128

    Google Scholar 

  • Tyrer MN, Turner JD, Altman JS (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330

    Article  CAS  PubMed  Google Scholar 

  • Vieillemaringe J, Duris P, Geffard M, LeMoal M, Delaage M, Bensch C, Girardie J (1984) Immunohistochemical localization of dopamine in the brain of the insect Locusta migratoria migratorioides in comparison with catecholamine distribution determined by the histofluorescence technique. Cell Tissue Res 237:391–394

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1957) The use of osmium in the fixation and staining of tissues. Proc R Soc Lond [Biol] 147:185–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Alexander von Humboldt-Stiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elekes, K., Hustert, R. & Geffard, M. Serotonin-immunoreactive and dopamine-immunoreactive neurones in the terminal ganglion of the cricket, Acheta domestica: Light- and electron-microscopic immunocytochemistry. Cell Tissue Res. 250, 167–180 (1987). https://doi.org/10.1007/BF00214668

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214668

Key words

Navigation