Skip to main content
Log in

Osteoclasts in teleost fish: Light-and electron-microscopical observations

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

This paper reports the common occurrence of osteoclasts during normal and experimental bone resorption in a number of teleost fishes. Light-microscopical observations on osteoclasts are presented in resorption areas on perichondral bone (mandibula and pharyngeal jaws of cichlids and vertebrae of gymnotids), on dermal bone (mandibula of salmonids and characoids and frontal bone of cichlids), on chondroid bone (pharyngeal jaws of cichlids), and on elasmoid body scales (eichlids and gymnotids). Osteoclasts acting along the bone surface usually lie in a Howship's lacuna whereas others are wrapped around bone extremities. Electronmicroscopical observations reveal that teleost osteoclasts show features similar to those of higher vertebrate osteoclasts, c.g., the presence of a ruffled border and the occurrence of numerous vacuoles, lysosomes and mitochondria. The multinucleated aspect that characterizes osteoclasts in other vertebrate groups is not a distinct feature of teleost osteoclasts since some are possibly mononucleated. Teleost osteoclasts are also able to resorb uncalcified tissues adjoining bone resorption areas, either as a primary process directed toward the tissue (basal plate of elasmoid scale) or as a secondary phenomenon (cartilage).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergot C (1975) Morphogenèse et structure des dents d'un téléostéen (Salmo fario L.). J Biol Buccale 3:301–324

    Google Scholar 

  • Berkovitz BKB (1977) Chronology of tooth development in the rainbow trout (Salmo gairdneri). J Exp Zool 200:65–70

    Google Scholar 

  • Berkovitz BKB, Shellis RP (1978) A longitudinal study of tooth succession in piranhas (Pisces: Characidae), with an analysis of the tooth replacement cycle. J Zool (Lond) 184:545–561

    Google Scholar 

  • Blanc M (1953) Contribution à l'étude de l'ostéogenèse chez les Poissons Téléostéens. Mém Mus Hist Nat (Paris) VII:1–145

    Google Scholar 

  • Bordat C (1987) Etude ultrastructurale de l'os des vertèbres du Sélacien Scyliorhinus canicula L.. Can J Zool 65:1435–1444

    Google Scholar 

  • Chambers TJ, Horton MA (1984) Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int 36:556–558

    Google Scholar 

  • Clark NB, Fleming WR (1963) The effect of mammalian parathyroid hormone on bone histology and serum calcium levels in Fundulus kansae. Gen Comp Endocrinol 3:461–467

    Google Scholar 

  • Crichton MI (1935) Scale-absorption in salmon and sea trout. Fish Brd Scot Salm Fish 4:1–8

    Google Scholar 

  • Dhem A (1971) Une cellule géante, l'ostéoclaste. Acta Stomatol Belg 68:213–230

    Google Scholar 

  • Eastman JT (1977) The pharyngeal bones and teeth of catostomid fishes. Am Midl Nat 97:68–88

    Google Scholar 

  • Ekanayake S, Hall BK (1987) The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinodontidae). J Morphol 193:253–261

    Google Scholar 

  • Ekanayake S, Hall BK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinodontidae). Am J Anat 182:241–249

    Google Scholar 

  • Francillon H, Meunier FJ, Ngo Tuan Phong D, Ricqlès A de (1975) Données préliminaires sur les structures histologiques du squelette de Latimeria chalumnae. II. Tissu osseux et cartilages. In: Lehman JP (ed) Problèmes actuels de Paléontologie: évolution des vertébrés. Colloques Int Cent Natl Rech Scient 287:487–489

  • Géraudie J, Meunier FJ (1984) Structure and comparative morphology of camptotrichia of lungfish fins. Tissue Cell 16:217–236

    Google Scholar 

  • Glowacki J, Cox KA, O'Sullivan J, Wilkie D, Deftos LJ (1986) Osteoclasts can be induced in fish having an acellular bony skeleton. Proc Natl Acad Sci USA 83:4104–4107

    Google Scholar 

  • Hancox NM (1972) The osteoclast. In: Bourne GH (ed) The biochemistry and physiology of bone. Academic Press, New York, pp 45–67

    Google Scholar 

  • Hirsch JG, Fedorko ME (1968) Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and “postfixation” in uranyl acetate. J Cell Biol 38:615–627

    Google Scholar 

  • Huysseune A (1986) Late skeletal development at the articulation between upper pharyngeal jaws and neurocranial base in the fish, Astatotilapia elgans, with the participation of a chondroid form of bone. Am J Anat 177:119–137

    Google Scholar 

  • Huysseune A, Verraes W (1986) Chondroid bone on the upper pharyngeal jaws and neurocranial base in the adult fish Astatotilapia elegans. Am J Anat 177:527–535

    Google Scholar 

  • Huysseune A, Verraes W (1986) Chondroid bone on the upper pharyngeal jaws and neurocranial base in the adult fish Astatotilapia elegans. Am J Anat 177:527–535

    Google Scholar 

  • Jones SJ, Boyde A (1977) Some morphological observations on osteoclasts. Cell Tissue Res 185:387–397

    Google Scholar 

  • Kahn AJ, Stewart CC, Teitelbaum SL (1978) Contact-mediated bone resorption by human monocytes in vitro. Science 199:988–990

    Google Scholar 

  • Kirschbaum F, Meunier FJ (1981) Experimental regeneration of the caudal skeleton of the glass knifefish, Eigenmannia virescens (Rhamphichthydae, Gymnotoidei). J Morphol 168:121–135

    Google Scholar 

  • Kirschbaum F, Meunier FJ (1988) South American gymnotiform fishes as model animals for regeneration experiments? Monogr Dev Biol 21:112–123

    Google Scholar 

  • Levi G (1939) Etudes sur le développement des dents chez les Téléostéens. I. Les dents de substitution chez les genres Ophidium, Trigla, Rhombus, Belone. Arch Anat Microsc 35:101–146

    Google Scholar 

  • Lopez E (1970a) Demonstration of several forms of decalcification in bone of the teleost fish, Anguilla anguilla L. Calcif Tissue Res 4[Suppl]:83

    Google Scholar 

  • Lopez E (1970b) L'os cellulaire d'un poisson Téléostéen “Anguilla anguilla L.”. I. Etude histocytologique et histophysique. Z Zellforsch 109:552–565

    Google Scholar 

  • Lopez E (1970c) L'os cellulaire d'un poisson Téléostéen “Anguilla anguilla L.”. II. Action de l'ablation des corpuscules de Stannius. Z Zellforsch 109:566–572

    Google Scholar 

  • Lopez E, Martelly-Bagot E (1971) L'os cellulaire d'un poisson Téléostéen, Anguilla anguilla L. III. Etude histologique et histophysique au cours de la maturation provoquée par injections d'extrait hypophysaire de carpe. Z Zellforsch 117:176–190

    Google Scholar 

  • Lopez E, Peignoux-Deville J, Lallier F, Martelly E, Millet C (1976) Effects of calcitonin and ultimobranchialectomy (UBX) on calcium and bone metabolism in the eel, Anguilla anguilla L. Calcif Tissue Res 20:173–186

    Google Scholar 

  • Marks SC, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183:1–44

    Google Scholar 

  • Meunier FJ (1983) Les tissus osseux des Ostéichthyens. Structure, genèse, croissance et évolution. Thèse de Doctorat d'Etat Paris. Arch Doc Inst Ethnol, micro-édition, Mus Nat Hist Nat, SN 82-600-328, 200 pp

  • Meunier (1987) Os cellulaire, os acellulaire et tissus dérivés chez les Ostéichthyens: les phénomènes de l'acellularisation et de la perte de minéralisation. Ann Biol 26:201–233

    Google Scholar 

  • Meunier FJ, Desse G (1978) Interprétation histologique de la “métamorphose radiographique” des vertèbres caudales du saumon (Salmo salar L.) lors de sa remontée en eau douce. Bull Fr Pisc 51:33–39

    Google Scholar 

  • Meunier FJ, Kirschbaum F (1978) Etude anatomique et histologique du squelette axial de Eigenmannia virescens (Rhamphichthyidae, Gymnotoidei). Acta Zool (Stockh) 59:215–228

    Google Scholar 

  • Moss ML (1961) Studies of the acellular bone of teleost fish. I. Morphological and systemic variations. Acta Anat (Basel) 46:343–362

    Google Scholar 

  • Moss ML (1962) Studies of the acellular bone of teleost fish. II. Response to fracture under normal and acalcemic conditions. Acta Anat (Basel) 48:46–60

    Google Scholar 

  • Moss ML (1963) The biology of acellular teleost bone. Ann NY Acad Sci 109:337–350

    Google Scholar 

  • Mundy GR, Altman AJ, Gondek MD, Bandelin JG (1977) Direct resorption of bone by human monocytes. Science 196:1109–1111

    Google Scholar 

  • Nelson JS (1984) Fishes of the world, 2nd edn. Wiley, New York

    Google Scholar 

  • Norris WP, Chavin W, Lombard LS (1963) Studies of calcification in a marine teleost. Ann NY Acad Sci 109:312–336

    Google Scholar 

  • Riehl R (1978) Feinstruktur der Knochenzellen in dem Gonopodium von Heterandria formosa Agassiz, 1853 (Teleostei, Poeciliidae). Acta Zool (Stockh) 59:199–202

    Google Scholar 

  • Riehl R, Holl A, Schulte E (1978) Morphologische und feinstrukturelle Untersuchungen an dem Gonopodium von Heterandria formosa Agassiz, 1853 (Pisces, Poeciliidae). Zoomorphologie 91:133–146

    Google Scholar 

  • Ruben JA, Bennett AF (1981) Intensive exercise, bone structure and blood calcium levels in vertebrates. Nature 291:411–413

    Google Scholar 

  • Schönbörner AA (1981) Données ultrastructurales et expérimentales sur la résorption des écailles chez les poissons téléostéens. Ichtyophysiol Acta 5:58–62

    Google Scholar 

  • Sire JY (1985) Fibres d'ancrage et couche limitante externe à la surface des écailles du Cichlidae Hemichromis bimaculatus (Téléostéen, Perciforme): données ultrastructurales. Ann Sci Nat Zool 7:163–180

    Google Scholar 

  • Tchernavin V (1938a) Changes in the salmon skull. Trans Zool Soc (Lond) 24:103–184

    Google Scholar 

  • Tchernavin V (1938b) The absorption of bones in the skull of salmon during their migration to rivers. Fish Brd Scot Salm Fish 6:1–4

    Google Scholar 

  • Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin Orthop 231:239–271

    Google Scholar 

  • Van Sommeren VD (1937) A preliminary investigation into the causes of scale absorption in salmon (Salmo salar L.). Fish Brd Scot Salm Fish 11:1–11

    Google Scholar 

  • Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56

    Google Scholar 

  • Wendelaar Bonga SE, Lammers PI (1982) Effects of calcitonin on ultrastructure and mineral content of bone and scales of the cichlid teleost Sarotherodon mossambicus. Gen Comp Endocrinol 48:60–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sire, JY., Huysseune, A. & Meunier, F.J. Osteoclasts in teleost fish: Light-and electron-microscopical observations. Cell Tissue Res 260, 85–94 (1990). https://doi.org/10.1007/BF00297493

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297493

Key words

Navigation