Skip to main content
Log in

Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae)

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The heterophyllous epiphyte Tillandsia deppeana exhibits an atmospheric habit as a juvenile and a tank form as an adult. Both juveniles and adults utilize C3 photosynthesis. This is the first report of an atmospheric form of Tillandsia which does not exhibit CAM. Photosynthetic saturation occurred at approximately 10% of full sunlight in both forms, but the adults exhibited greater rates of photosynthesis at all levels of irradiance. The adults also had a higher and broader photosynthetic temperature optimum than did the juveniles. The adults transpired at greater rates than the juveniles; however, the water use efficiencies of both forms were similar and were high for C3 plants. In both forms the photosynthetic rate decreased in response to a decrease in humidity. After 8 days without water the juveniles were able to fix CO2 throughout the day. The adults, however, exhibited a net loss of CO2 on the second day without water and thereafter. These results indicate that the water-conservative atmospheric juvenile of T. deppeana is well adapted to establishment in the epiphytic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams WW III, Martin CE (1986a) Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Am J Bot 73:1205–1212

    Google Scholar 

  • Adams WW III, Martin CE (1986 b) Heterophylly and its relevance to evolution within the Tillandsioideae. Selbyana (in press)

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Google Scholar 

  • Ball T, Berry J (1985) A simple empirical model of stomatal control. Plant Physiol 77 (Suppl):91

    Google Scholar 

  • Benzing DH (1970) Foliar permeability and the absorption of minerals and organic nitrogen by certain tank bromeliads. Bot Gaz 131:23–31

    Google Scholar 

  • Benzing DH (1973) The monocotyledons: their evolution and comparative biology. 1. Mineral nutrition and related phenomena in Bromeliaceae and Orchidaceae. Quart Rev Biol 48:277–290

    Google Scholar 

  • Benzing DH (1976) Bromeliad trichomes: structure, function, and ecological significance. Selbyana 1:330–348

    Google Scholar 

  • Benzing DH (1978) The life history profile of Tillandsia circinnata (Bromeliaceae) and the rarity of extreme epiphytism among the angiosperms. Selbyana 2:325–337

    Google Scholar 

  • Benzing DH (1980) The biology of the bromeliads. Mad River Press, Eureka

    Google Scholar 

  • Benzing DH, Burt KM (1970) Foliar permeability among twenty species of the Bromeliaceae. Bull Torrey Bot Club 97:269–279

    Google Scholar 

  • Benzing DH, Dahle CE (1971) The vegetative morphology, habitat preference and water balance mechanisms of the bromeliad Tillandsia ionantha Planch. Am Midl Nat 85:11–21

    Google Scholar 

  • Benzing DH, Friedman WE (1981) Patterns of foliar pigmentation in Bromeliaceae and their adaptive significance. Selbyana 5:224–240

    Google Scholar 

  • Benzing DH, Renfrow A (1971 a) Significance of the patterns of CO2 exchange to the ecology and phylogeny of the Tillandsioideae (Bromeliaceae). Bull Torrey Bot Club 98:322–327

    Google Scholar 

  • Benzing DH, Renfrow A (1971 b) The significance of photosynthetic efficiency to habitat preference and phylogeny among tillandsioid bromeliads. Bot Gaz 132:19–30

    Google Scholar 

  • Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Bot Gaz 135:281–288

    Google Scholar 

  • Benzing DH, Henderson K, Kessel B, Sulak J (1976) The absorptive capacities of bromeliad trichomes. Am J Bot 63:1009–1014

    Google Scholar 

  • Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran Desert plants. Oecologia (Berlin) 49:366–370

    Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–556

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Google Scholar 

  • Farquhar GD, Ball MC, von Caemmerer S, Roksandic Z (1982) Effect of salinity and humidity on δ13C value of halophytes — evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia (Berlin) 52:121–124

    Google Scholar 

  • Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia (Berlin) 60:176–184

    Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. Calif Agr Exp Sta Cir 347

  • Kluge M, Lange OL, von Eichmann M, Schmid R (1973) Diurnale Säuerhythmus bei Tillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2 — Gaswechsels von Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta 112:357–372

    Google Scholar 

  • Lange OL, Medina E (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia (Berlin) 60:357–363

    Google Scholar 

  • Lieske R (1914) Die Heterophyllie epiphytischer, rosettenbildender Bromeliaceen. Jb wiss Bot 53:502–510

    Google Scholar 

  • Mahall BE, Schlesinger WH (1982) Effects of irradiance on growth, photosynthesis, and water use efficiency of seedlings of the chaparral shrub Ceanothus megacarpus. Oecologia (Berlin) 54:291–299

    Google Scholar 

  • Martin CE, Peters EA (1984) Functional stomata of the atmospheric epiphyte Tillandsia usneoides L. Bot Gaz 145:502–507

    Google Scholar 

  • Martin CE, Siedow JN (1981) Crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. (Spanish moss). Responses of CO2 exchange to controlled environmental conditions. Plant Physiol 68:335–339

    Google Scholar 

  • Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14CO2 uptake in the Crassulacean acid metabolism epiphyte Tillandsia usneoides L. (Spanish moss). Oecologia (Berlin) 40:322–328

    Google Scholar 

  • Matos J, Rudolph C (1984) Aspects of the life history of Tillandsia deppeana in northeastern Mexico. In: Gardner S (ed) Proc 1982 world bromeliad conf. Mission Press, Corpus Christi, pp 71–75

    Google Scholar 

  • McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot Gaz 131:285–290

    Google Scholar 

  • Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686

    Google Scholar 

  • Medina E, Troughton JH (1974) Dark CO2 fixation and the carbon isotope ratio in Bromeliaceae. Plant Sci Lett 2:357–362

    Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166:137–152

    Google Scholar 

  • Mez C (1904) Physiologische Bromeliaceen-Studien 1. Die Wasserökonomie der extrem atmosphärischen Tillandsien. Jb wiss Bot 40:157–229

    Google Scholar 

  • Morren É (1873) Exposition de Liége. Belgique Horticole Annales D'Horticulture Belge et Etrangere 23:137–138

    Google Scholar 

  • Pavlik BM (1980) Patterns of water potential and photosynthesis of desert sand dune plants, Eureka Valley, California. Oecologia (Berlin) 46:147–154

    Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. 1 — The bromeliad flora. Evolution 2:58–89

    Google Scholar 

  • Sharkey TD (1984) Transpiration induced changes in the photosynthetic capacity of leaves. Planta 160:143–150

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. 2nd Ed WH Freemann and Co, San Francisco

    Google Scholar 

  • Szarek SR, Ting IP (1975) Photosynthetic efficiency of CAM plants in relation to C3 and C4 plants. In: Marcelle R (ed) Environmental and biological control of photosynthesis. Dr W Junk NV, The Hague, pp 289–297

    Google Scholar 

  • Ting IP, Rayder L (1982) Regulation of C3 to CAM shift. In: Ting IP, Gibbs M (eds) Crassulacean Acid Metabolism. Am Soc Plant Physiol, Rockville, pp 193–207

    Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to Crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia (Berlin) 34:225–237

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia (Berlin) 57:129–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, W.W., Martin, C.E. Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Oecologia 70, 298–304 (1986). https://doi.org/10.1007/BF00379255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379255

Key words

Navigation