Skip to main content
Log in

Dynein-related polypeptides in pollen and pollen tubes

  • Minireview
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Microtubules in pollen tubes are evident within the vegetative and generative cell cytoplasm. This observation led to the formulation of several hypotheses regarding the role of microtubules in cytoplasmic movement and the migration of the vegetative nucleus/generative cell along the pollen tube. The study of microtubular motor proteins in pollen tubes followed the discovery and characterization of an immunoreactive homolog of mammalian kinesin in tobacco pollen tubes. Recent identification of dynein-related polypeptides in pollen tubes ofNicotiana tabacum and pollen ofGinkgo biloba is a significant step in the definition of the role of microtubule function within pollen and pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckwith SM, Asai DJ (1993) Ciliary dynein ofParamecium tetraurelia: photolytic maps of the three heavy chains. Cell Motil Cytoskeleton 24:29–38

    Article  PubMed  CAS  Google Scholar 

  • Belles Isles M, Chapeau C, White D, Gagnon C (1986) Isolation and characterization of dynein ATPase from bull spermatozoa. Biochem J 240:963–869

    Google Scholar 

  • Cai G, Moscatelli A, Del Casino C, Cresti M (1996) Cytoplasmic motors and pollen tube growth. Sex Plant Reprod 9:59–64

    Article  Google Scholar 

  • Derksen J, Rutten T, Van Amstel T, De Win A, Doris F, Steer M (1995) Regulation of pollen tube growth. Acta Bot Neerl 44:93–119

    Google Scholar 

  • Dunn MJ (1989) Determination of total protein concentration. In: Harris ELV, Angal S (eds) Protein purification methods. A practical approach. IRL Press, Oxford, p 12

    Google Scholar 

  • Endow SA, Titus MA (1992) Genetic approaches to molecular motors. Annu Rev Cell Biol 8:29–66

    Article  PubMed  CAS  Google Scholar 

  • Fay RB, Witman GB (1977) The localization of flagellar ATPases inChlamydomonas reinhardtii. J Cell Biol 75:286a

    Google Scholar 

  • Friedman WE (1987) Growth and development of the male gametophyte ofGinkgo biloba within the ovule (in vivo). Am J Bot 74:1797–1815

    Article  Google Scholar 

  • Gibbons IR (1965) Chemical dissection of the cilia. Arch Biol (Liège) 76:317–352

    CAS  Google Scholar 

  • Gibbons IR, Lee-Eiford A, Mocz G, Philipson CA, Tang W-JY, Gibbons BH (1987) Photosensitized cleavege of dynein heavy chain. Cleavage of the V1 site by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem 262: 2780–2786

    PubMed  CAS  Google Scholar 

  • Gibbons IR, Gibbons BH, Mocz G, Asai DJ (1991) Multiple nucleotide-binding sites in the sequence of dynein β heavy chain. Nature 352:640–643

    Article  PubMed  CAS  Google Scholar 

  • Gifford EM, Larson S (1980) Developmental features of the spermatogenous cell inGinkgo biloba. Am J Bot 67:119–124

    Article  Google Scholar 

  • Gifford EM, Lin J (1975) Light microscope and ultrastructural studies of the male gametophyte inGinkgo biloba: the spermatogenous cell. Am J Bot 62:974–981

    Article  Google Scholar 

  • Grissom PM, Porter ME, McIntosh JR (1992) Two distinct isoforms of sea urchin egg dynein. Cell Motil Cytoskeleton 21: 281–292

    Article  PubMed  CAS  Google Scholar 

  • Hisanaka S, Sakai H (1983) Cytoplasmic dynein of sea urchin egg. II. Purification, characterization and interaction with microtubules and Ca2+-calmodulin. J Biochem 93:87–98

    Google Scholar 

  • Holzbauer EL, Vallee RB (1994) Dyneins: molecular structure and cellular function. Annu Rev Cell Biol 10:339–372

    Article  Google Scholar 

  • Koonce MP, McIntosh JR (1990) Identification and immunolocalization of cytoplasmic dynein inDyctiostelium. Cell Motil Cytoskeleton 15:51–62

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze-substituted pollen tubes. Protoplasma 140:141–150

    Article  Google Scholar 

  • Li Y, Wang FH, Knox RB (1989) Ultrastructural analysis of the flagellar apparatus in sperm cells ofGinkgo biloba. Protoplasma 149:57–63

    Article  Google Scholar 

  • Lye RJ, Porter ME, Scholey JM, McIntosh JR (1987) Identification of a microtubule-based cytoplasmic motor in the nematodeC. elegans. Cell 51:309–318

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DR, Warner FD (1981) Binding of dynein 21 S ATPase to microtubules: effects of ionic conditions and substrate analogs. J Biol Chem 256:12535–12544

    PubMed  CAS  Google Scholar 

  • Moscatelli A, Del Casino C, Lozzi L, Cai G, Scali M, Tiezzi A, Cresti M (1995) High molecular weight polypeptides related to dynein heavy chains inNicotiana tabacum pollen tubes. J Cell Sci 108:1117–1125

    PubMed  CAS  Google Scholar 

  • Ogawa K (1991) Four ATP-binding sites in the midregion of the beta heavy chain of dynein. Nature 352:643–645

    Article  PubMed  CAS  Google Scholar 

  • Paschal BM, Shpetner HS, Vallee RB (1987) MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Piperno G (1990) Functional diversity of dyneins. Cell Motil Cytoskeleton 17:147–149

    Article  PubMed  CAS  Google Scholar 

  • Pfarr CM, Coue M, Grissom PM, Hays TS Porter ME, McIntosh JR (1990) Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345:263–265

    Article  PubMed  CAS  Google Scholar 

  • Porter EM, Johnson AJ (1989) Dynein structure and function. Annu Rev Cell Biol 5:119–151

    Article  PubMed  CAS  Google Scholar 

  • Satir P (1989) Structural analysis of the dynein cross-bridge cycle in cell movement. In: Warner FD, Satir P, Gibbons IR (eds) Kinesin, Dynein, and microtubule dynamics vol 2. Liss, New York, pp 219–234

    Google Scholar 

  • Schroer T, Sheetz MP (1991) Functions of the microtubule-based motors. Annu Rev Physiol 53:629–653

    Article  PubMed  CAS  Google Scholar 

  • Tiezzi A Pirson ES, Theunis CH, Ciampolini F, Cai G, Bartalesi A, Cresti M (1991) The motile apparatus of sperm cells in angiosperms: correlations with lower plants, gymnosperms and animals. In: Baccetti B (ed) Comparative spermatology 20 years after. (Serono Symposia Publications, vol 75) Raven Press, New York, pp 1017–1020

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vaisberg EA, Koonce MP, McIntosh JR (1993) Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol 123:849–858

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB (1993) Molecular analysis of the microtubule motor dynein. Proc Natl Acad Sci USA 90:8769–8772

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Mabuchi I (1994) Isolation and characterization of a novel dynein that contains C and A heavy chains from sea urchin flagellar axonemes. J Cell Sci 107:345–351

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Moscatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moscatelli, A., Cai, G., Liu, GQ. et al. Dynein-related polypeptides in pollen and pollen tubes. Sexual Plant Reprod 9, 312–317 (1996). https://doi.org/10.1007/BF02441948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441948

Key words

Navigation