Skip to main content
Log in

Modelling of Aniline-Vermiculite and Tetramethylammonium-Vermiculite; Test of Force Fields

  • Full Paper
  • Published:
Molecular modeling annual Aims and scope Submit manuscript

Abstract

Molecular mechanics simulations in Cerius2 have been used for modelling vermiculite intercalated with tetramethylammonium and aniline cations. The published structure data obtained for these intercalated structures from X-ray single crystal diffraction have been used to test the force fields and modelling strategy for organo-clays. The strategy of modelling was based on the nonbond host-guest interactions and on rigid silicate layers and rigid guest species. The rigidity of silicate layers requires that the cell parameters a, b andγare kept fixed during the energy minimisation. The energy term was set up using the nonbond interaction terms only and the Crystal Packer module in Cerius2 has been used for the energy minimisation. In Crystal Packer the rigid units, i.e. the silicate layers and guest species can be translated and rotated during energy minimisation and the cell parameters c, α, and β have been varied. Three sets of Van derWaals (VDW) parameters available in Crystal Packer: Tripos, Universal and Dreiding have been used in present molecular simulations. Ab initio MP2 calculations were performed to justify the application of the force field. The best agreement of molecular mechanics simulations with both: experimental and ab initio data was obtained with the Tripos VDW parameters for both intercalates. The results of modelling are in good agreement with the experimental data as to the cell parameters and the interlayer packing. The cell parameters reported by Vahedi-Faridi and Guggenheim (1997) for tetramethylammonium-vermiculite are: c = 13.616 Å, α = 90°, β = 97.68° ; from the present modelling we obtained: c = 13.609 Å, α = 90.19°, β = 97.56°. Tetramethylammonium-cations are arranged in one layer in the interlayer space. One C-C edge of NC4 tetrahedra is perpendicular to the silicate layers. The deep immersion of the methyl groups into the ditrigonal cavities suggested by Vahedi-Faridi and Guggenheim was not confirmed by modelling. Slade and Stone (1984) presented the measured cell parameters for aniline vermiculite: c = 14.89 Å, α = 90°, β = 97°; present result is: c = 14.81 Å, α = 90.72°, β = 96.70° for partially exchanged vermiculite and c = 14.84 Å, α = 90.53°, β = 97.17° for fully exchanged vermiculite. The aniline cations are positioned over the ditrigonal cavities alternating in their anchoring to lower and upper silicate layer. The C-N bonds are perpendicular to layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 7 December 1998/ Accepted: 11 January 1999/ Published: 9 February 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capková, P., Burda, J., Weiss, Z. et al. Modelling of Aniline-Vermiculite and Tetramethylammonium-Vermiculite; Test of Force Fields. J Mol Med 5, 8–16 (1999). https://doi.org/10.1007/s008940050101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s008940050101

Navigation