Skip to main content
Log in

Measurement of the diffractive structure functionF 2 D(4) at HERA

  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with χ L > 0.97, where xL is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of t, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section ont is measured in the interval 0.073 < |t| < 0.4 GeV2 and is found to be described by an exponential shape with the slope parameterb = 7.2 ± 1.1(stat.) +0.7−0.9 (syst.) GeV−2. The diffractive structure function FD (4) is presented as 0.9 a function of χ H ≃ 1 − χ L and β, the momentum fraction of the struck quark with respect to χ H , and averaged over thet interval 0.073 < |t′ < 0.4 GeV2 and the photon virtuality range 5 <Q 2 < 20 GeV2. In the kinematic range 4 × 104 < χ p < 0.03 and 0.015 < β < 0.5, the χ p dependence ofF D(4) is fitted with a form (1/χ p )α , yieldinga − 1.00 ± 0.09 (stat.) +0.11−0.05 (syst.). Upon integration overL, the structure functionF 2 D(3) is determined in a kinematic range extending to higher χ p and lower β compared to our previous analysis; the results are discussed within the framework of Regge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ZEUS Collaboration, M. Derrick et al., Phys. Lett.B315 (1993) 481

    Article  ADS  Google Scholar 

  2. H1 Collaboration, T. Ahmed et al., Nucl. Phys.B429 (1994) 477

    Article  ADS  Google Scholar 

  3. H1 Collaboration, T. Ahmed et al., Phys. Lett.B348 (1995) 681

    Article  ADS  Google Scholar 

  4. ZEUS Collaboration, M. Derrick et al., Z. Phys.C68 (1995) 569

    ADS  Google Scholar 

  5. H1 Collaboration, C. Adloff et al., DESY report DESY 97–158

  6. ZEUS Collaboration, M. Derrick et al., Z. Phys.C70 (1996) 391

    Google Scholar 

  7. A. Donnachie and P.V. Landshoff, Nucl. Phys.B244 (1984) 322

    Article  ADS  Google Scholar 

  8. Phys. Lett.B296 (1992) 227

    Article  ADS  Google Scholar 

  9. A.H. Mueller, Phys. Rev.D2 (1970) 2963;

    ADS  Google Scholar 

  10. For a review, see e.g. K. Goulianos, Phys. Rep.101 (1983) 169

    Article  ADS  Google Scholar 

  11. UA4 Collaboration, D. Bernard et al., Phys. Lett.B186 (1987) 227

    Article  ADS  Google Scholar 

  12. UA8 Collaboration, R. Bonino et al., Phys. Lett.B211 (1988) 239;

    Article  ADS  Google Scholar 

  13. E710 Collaboration, N.A. Amos et al., Phys. Lett.B301 (1993) 313

    Article  ADS  Google Scholar 

  14. CDF Collaboration, F. Abe et al., Phys. Rev.D50 (1994) 5535

    ADS  Google Scholar 

  15. E612 Collaboration, T.J. Chapin et al., Phys. Rev.D31 (1985) 17

    ADS  Google Scholar 

  16. H1 Collaboration, C. Adloff et al., Z. Phys.C74 (1997) 221

    Google Scholar 

  17. ZEUS Collaboration, J. Breitweg et al., Z. Phys.C75 (1997) 421

    Google Scholar 

  18. G. Ingelman and P. Schlein, Phys. Lett.B152 (1985) 256

    Article  ADS  Google Scholar 

  19. ZEUS Collaboration, M. Derrick et al., Phys. Lett.B293 (1992) 465;

    Article  ADS  Google Scholar 

  20. The ZEUS Detector, Status Report 1993, DESY 1993

  21. A. Andresen et al., Nucl. Inst. Meth.A309 (1991) 101;

    Article  ADS  Google Scholar 

  22. C. Alvisi et al., Nucl. Inst. Meth.A305 (1991) 30

    Article  ADS  Google Scholar 

  23. N. Harnew et al., Nucl. Inst. Meth.A279 (1989) 290;

    Article  ADS  Google Scholar 

  24. ZEUS Collaboration, M. Derrick et al., Z. Phys.C69 (1996) 607

    Google Scholar 

  25. ZEUS Collaboration, M. Derrick et al., Z. Phys.C63 (1994) 391

    ADS  Google Scholar 

  26. ZEUS Collaboration, M. Derrick et al., Z. Phys.C73 (1997) 253

    Google Scholar 

  27. U. Amaldi et al., Phys. Lett.B43 (1973) 231

    Article  ADS  Google Scholar 

  28. S. Bentvelsen, J. Engelen and P. Kooijman, Proceedings of the Workshop “Physics at HERA”, vol. 1, DESY (1992) 23

  29. A. Abramowicz, A. Caldwell and R. Sinkus, Nucl. Inst. Meth.A365 (1995) 508

    Article  ADS  Google Scholar 

  30. H. Jung, DESY Report DESY 93-182

  31. K.H. Streng, in Proc. of the Workshop “Physics at HERA”, p. 365, ed. R.D. Peccei (Hamburg 1987)

  32. K. Kwiatkowski, H. Spiesberger and H.-J. Möhring, Proceedings of the Workshop “Physics at HERA” vol. 3, DESY (1992) 1294

  33. L. Lönnblad, Comp. Phys. Comm.71 (1992) 15;

    Article  ADS  Google Scholar 

  34. T. Sjöstrand and M. Bergtsson, Comp. Phys. Comm.43 (1987) 367

    Article  ADS  Google Scholar 

  35. ZEUS Collaboration, M. Derrick et al., Phys. Lett.B380 (1996) 220

    Article  ADS  Google Scholar 

  36. N.N. Nikolaev and B.G. Zakharov, Z. Phys.C53 (1992) 331;

    ADS  Google Scholar 

  37. A. Solano, Ph.D. Thesis, University of Torino 1993 (unpublished)

  38. ZEUS Collaboration, M. Derrick et al., Phys. Lett.B356 (1995) 601

    Article  ADS  Google Scholar 

  39. M. Kasprzak, PhD thesis, Warsaw University (1996), DESY Internal Report F35D-96-16

  40. H.-U. Bengtsson and T. Sjöstrand, Comp. Phys. Comm.46 (1987) 43;

    Article  ADS  Google Scholar 

  41. T. Sjöstrand, CERN TH-7112-93, (1994)

  42. L.L. Frankfurt, L. Mankiewics and M.I. Strikman, Z. Phys.A334 (1989) 343

    ADS  Google Scholar 

  43. GEANT 3.13, R. Brun et al., CERN DD/EE/84-1 (1987)

  44. ZEUS Collaboration, M. Derrick et al., Z. Phys.C72 (1996) 399

    ADS  Google Scholar 

  45. F. Jacquet and A. Blondel, Proceedings of “The study of anep facility for Europe”, DESY 79/48 (1979) 391

  46. K. Golec-Biernat, J. Kwieciński and A. Szczurek, INP Cracow preprint 1754/PH, hep-ph/9701254

  47. N.N. Nikolaev, W. Schäfer and B.G. Zakharov, preprint KFA-IKP(Th)-1996-06, hep-ph/9608338

  48. K. Goulianos, Phys. Lett.B358 (1995) 379 (and Erratum in Phys. Lett.B363 (1995) 268)

    Article  ADS  Google Scholar 

  49. CDF Collaboration, F. Abe et al., Phys. Rev.D50 (1994) 5518

    ADS  Google Scholar 

  50. N.N. Nikolaev, B.G. Zakharov and V.R. Zeller, Phys. Lett.B366 (1996) 337

    Article  ADS  Google Scholar 

  51. U. Bassler and G. Bernardi, Nucl. Inst. Meth.A361 (1995) 197

    Article  ADS  Google Scholar 

  52. G. D'Agostini, Nucl. Inst. Meth.A362 (1995) 487

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Additional information

also at IROE Florence, Italy

now at Univ. of Salerno and INFN Napoli, Italy

now at Univ. of Crete, Greece

supported by Worldlab, Lausanne, Switzerland

now at CERN

retired

also at University of Torino and Alexander von Humboldt Fellow at DESY

now at Dongshin University, Naju, Korea

also at DESY

Alfred P. Sloan Foundation Fellow

supported by the Polish State Committee for Scientific Research, grant No. 2P031314912

supported by an EC fellowship number ERBFMBICT 950172

now at SAP A.G., Walldorf

visitor from Florida State University

now at ALCATEL Mobile Communication GmbH, Stuttgart

supported by European Community Program PRAXIS XXI

now at DESY-Group FDET

now at DESY Computer Center

visitor from Kyungpook National University, Taegu, Korea, partially supported by DESY

now at Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA

now at NORCOM Infosystems, Hamburg

now at Oxford University, supported by DAAD fellowship HSP II-AUFE III

now at ATLAS Collaboration, Univ. of Munich

on leave from MSU, supported by the GIF, contract I-0444176.07/95

now a self-employed consultant

supported by an EC fellowship

PPARC Post-doctoral Fellow

now at Osaka Univ., Osaka, Japan

supported by JSPS Postdoctoral Fellowships for Research Abroad

now at Wayne State University, Detroit

partially supported by Comunidad Autonoma Madrid

partially supported by the Foundation for German-Russian Collaboration DFG-RFBR (grant no. 436 RUS 113/248/3 and no. 436 RUS 113/248/2)

now at Department of Energy, Washington

supported by the Feodor Lynen Program of the Alexander von Humboldt foundation

now at Lawrence Berkeley Laboratory, Berkeley, CA, USA

supported by a MINERVA Fellowship

now at ICEPP, Univ. of Tokyo; Tokyo, Japan

supported by the Polish State Committee for Scientific Research, grant No. 2P031309308

supported by the Polish State Committee for Scientific Research, grant No. 2P031309208

supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

supported by the FCAR of Québec, Canada

supported by the German Federal Ministry for Education and Science, Research and Technology (BMBF), under contract numbers 057BN19P, 057FR19P, 057HH19P, 057HH29P, 057SI75I

supported by the MINERVA Gesellschaft für Forschung GmbH, the German Israeli Foundation, and the U.S.-Israel Binational Science Foundation

supported by the German Israeli Foundation, and by the Israel Science Foundation

supported by the Italian National Institute for Nuclear Physics (INFN)

supported by the Japanese Ministry of Education, Science and Culture (the Monbusho) and its grants for Scientific Research

supported by the Korean Ministry of Education and Korea Science and Engineering Foundation

supported by the Netherlands Foundation for Research on Matter (FOM)

supported by the Polish State Committee for Scientific Research, grant No. 115/E-343/SPUB/P03/002/97, 2P031310512, 2P031310612, 2P0313142I2, 2P0313104I2

supported by the Polish State Committee for Scientific Research (grant No. 2P031308308) and Foundation for Polish-German Collaboration

partially supported by the German Federal Ministry for Education and Science, Research and Technology (BMBF)

supported by the Fund for Fundamental Research of Russian Ministry for Science and Education and by the German Federal Ministry for Education and Science, Research and Technology (BMBF)

supported by the Spanish Ministry of Education and Science through funds provided by CICYT

supported by the Particle Physics and Astronomy Research Council

supported by the US Department of Energy

supported by the US National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZEUS Collaboration., Breitweg, J., Derrick, M. et al. Measurement of the diffractive structure functionF 2 D(4) at HERA. Eur. Phys. J. C 1, 81–96 (1998). https://doi.org/10.1007/BF01245799

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245799

Keywords

Navigation