Skip to main content
Log in

Neutrino production of same-sign dimuons at the Fermilab Tevatron

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μμ events and 25 μ+μ+ events withP μ>9 GeV/c, produced in 1.5 millionv μ and 0.3 million\(\overline {v_\mu }\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 perv μ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu }\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc \(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 perv μ charged-current event. In this case,c \(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Cudell, F. Halzen, K. Hikasa: Phys. Lett. B 175 (1986) 227

    Google Scholar 

  2. V. Barger, W.Y. Keung, R.J.N. Phillips: Phys. Rev. D 24 (1981) 244

    Google Scholar 

  3. K. Lang et al.: Z. Phys. C 33 (1987) 483

    Google Scholar 

  4. J.G.H. DeGroot et al.: Phys. Lett. 86B (1979) 103

    Google Scholar 

  5. M. Holder et al.: Phys. Lett. 70B (1977) 396

    Google Scholar 

  6. H. Burkhardt et al.: Z. Phys. C 31 (1985) 39

    Google Scholar 

  7. M. Jonker et al.: Phys. Lett. 107B (1981) 241

    Google Scholar 

  8. T. Trinko et al.: Phys. Rev. D 23 (1981) 1889

    Google Scholar 

  9. K. Nishikawa et al.: Phys. Rev. Lett. 46 (1981) 1555

    Google Scholar 

  10. K. Nishikawa et al.: Phys. Rev. Lett. 54 (1985) 1336

    Google Scholar 

  11. B.A. Schumm et al.: Phys. Rev. Lett. 60 (1988) 1618

    Google Scholar 

  12. P.H. Sandler: Ph.D. Thesis. University of Wisconsin-Madison 1992

  13. W.K. Sakumoto et al.: Nucl. Instrum. Methods A 294 (1990) 179

    Google Scholar 

  14. F.S. Merritt et al.: Nucl. Instrum. Methods A 245 (1986) 27

    Google Scholar 

  15. S.R. Mishra et al.: Phys. Rev. Lett. 63 (1989) 132

    Google Scholar 

  16. B.A. Schumm: Ph.D. Thesis. University of Chicago 1988

  17. B.J. King et al.: Nucl. Instrum. Methods A 302 (1991) 254

    Google Scholar 

  18. S.R. Mishra et al.: Measurements of nucleon structure functions... (1992) (submitted for publication to Phys. Rev. Lett.)

  19. Review of Particle Properties. Physics Letters B 239 (1990)

  20. P.H. Sandler et al.: Phys. Rev. D 42 (1990) 761

    Google Scholar 

  21. T. Sjöstrand: Comput. Phys. Commun. 27 (1982) 243

    Google Scholar 

  22. D. Allasia et al.: Z. Phys. C 24 (1984) 119; H. Deden et al.: Nucl. Phys. B 198 (1982) 365; N.J. Baker et al.: Phys. Rev. D 34 (1986) 1251

    Google Scholar 

  23. A. Arvidson et al.: Nucl. Phys. B 246 (1984) 381; M. Arneodo et al.: Phys. Lett. 145B (1984) 156

    Google Scholar 

  24. N. Angelov et al.: Yad. Fiz. 25 (1977) 1013; Sov. J. Nucl. Phys. 25 (1977) 539

    Google Scholar 

  25. W. Busza: Nucl. Phys. A 418 (1984) 635

    Google Scholar 

  26. F.W. Brasse et al.: Proceedings of the 20th International Conference of High Energy Physics. 1980, p. 755

  27. K.J. Anderson et al.: Phys. Rev. Lett. 37 (1976) 799

    Google Scholar 

  28. V. Barger, T. Gottschalk, R.J.N. Phillips: Phys. Rev. D 17 (1977) 2284

    Google Scholar 

  29. This cut on the momentum of the least energetic muon for the identified trimuon events was chosen to minimize trimuons from meson-decays in the hadron shower of opposite-sign dimuon events

  30. V. Barger, W.Y. Keung, R.J.N. Phillips: Phys. Rev. D 25 (1982) 1803

    Google Scholar 

  31. M.H. Shaevitz: Nucl. Phys. B (Proc. Suppl.) 19 (1991) 270

    Google Scholar 

  32. W.C. Leung: Ph.D. Thesis. Columbia University 1991

  33. C. Peterson et al.: Phys. Rev. D 27 (1983) 105

    Google Scholar 

  34. H. Albrecht et al.: Phys. Lett. 105B (1985) 235

    Google Scholar 

  35. P.Z. Quintas et al.: A measurement of\(\Lambda _{\overline {MS} }\) fromv μ structure functions at the Fermilab Tevatron. (1992) (submitted for publication to Phys. Rev. Lett.)

  36. V. Barger (Private Communication, 1992)

  37. Eadie et al.: Statistical methods in experimental physics, pp. 269–270. Amsterdam: North-Holland 1971

    Google Scholar 

  38. C. Foudas: Ph.D. Thesis, Columbia University 1989

  39. J.C. Anjos et al.: Phys. Rev. Lett. 60 (1988), 1239

    Google Scholar 

  40. V. Jain et al.: Phys. Rev. D 41 (1990) 2057

    Google Scholar 

  41. A. Benvenuti et al.: Phys. Rev. Lett. 35 (1975) 1199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandler, P.H., Kinnel, T.S., Smith, W.H. et al. Neutrino production of same-sign dimuons at the Fermilab Tevatron. Z. Phys. C - Particles and Fields 57, 1–12 (1993). https://doi.org/10.1007/BF01555733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01555733

Keywords

Navigation