Skip to main content
Log in

Determination of the strange quark content of the nucleon from a next-to-leading-order QCD analysis of neutrino charm production

  • Experimental Physics
  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We present the first next-to-leading-order QCD analysis of neutrino charm production, using a sample of 6090ν μ and\(\bar \nu _\mu \)-induced opposite-sign dimuon events observed in the CCFR detector at the Fermilab Tevatron. We find that the nucleon strange quark content is suppressed with respect to the non-strange sea quarks by a factor κ=0.477 +0.063−0.053 , where the error includes statistical, systematic and QCD scale uncertainties. In contrast to previous leading order analyses, we find that the strange seax-dependence is similar to that of the non-strange sea, and that the measured charm quark mass,m c =1.70±0.19 GeV/c2, is larger and consistent with that determined in other processes. Further analysis finds that the difference inx-distributions betweenxs(x) and\(x\bar s{\text{(}}x{\text{)}}\) is small. A measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V cd |=0.232 +0.018−0.020 is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Collins, D.E. Soper and G. Sterman, in: Perturbative Quantum Chromodynamics, ed. A.H. Mueller (World Scientific, Singapore, 1989)

    Google Scholar 

  2. J. Botts et al. (CTEQ Collab.), Phys. Lett. B 304 (1993) 159

    Google Scholar 

  3. A.D. Martin, R.G. Roberts and W.J. Stirling, Phys. Lett. B 306 (1993) 145

    Google Scholar 

  4. W.K. Sakumoto et al. (CCFR Collab.), Nucl. Instrum. Methods Phys. Res. A 294 (1990) 179

    Google Scholar 

  5. B.J. King et al. (CCFR Collab.), Nucl. Instrum. Methods Phys. Res. A 302 (1991) 254

    Google Scholar 

  6. S.A. Rabinowitz et al. (CCFR Collab.), Phys. Rev. Lett. 70 (1993) 134

    Google Scholar 

  7. R. Barbieri, J. Ellis, M.K. Gaillard and G.G. Ross, Nucl. Phys. B 117 (1976) 50

    Google Scholar 

  8. M.A.G. Aivazis, F.I. Olness and W.-K. Tung, Phys. Rev. D 50 (1994) 3085

    Google Scholar 

  9. R.M. Barnett, Phys. Rev. Lett. 36 (1976) 1163; H. Georgi and H.D. Politzer, Phys. Rev. D 14 (1976) 1829

    Google Scholar 

  10. V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438; G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298

    Google Scholar 

  11. S. Dasu et al., Phys. Rev. Lett. 61 (1988) 1061

    Google Scholar 

  12. M.A.G. Aivazis, F.I. Olness and W.-K. Tung, Phys. Rev. Lett. 65 (1990) 2339

    Google Scholar 

  13. M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Phys. Rev. D 50 (1994) 3102

    Google Scholar 

  14. G. Kramer and B. Lampe, Z. Phys. C 54 (1992) 139

    Google Scholar 

  15. J.J. van der Bij and G.J. van Oldenborgh, Z. Phys. C 51 (1991) 477

    Google Scholar 

  16. N. Ushida et al. (E531 Collab.), Phys. Lett. B 206 (1988) 375; B 206 (1988) 380

    Google Scholar 

  17. P. Collins and T. Spiller, J. Phys. G 11 (1985) 1289

    Google Scholar 

  18. T. Sjostrand et al., Comput. Phys. Commun. 27 (1982) 243

    Google Scholar 

  19. P.H. Sandler et al. (CCFR Collab.), Z. Phys. C 57 (1993) 1

    Google Scholar 

  20. D. Bardin and N. Shumeiko, Sov. J. Nucl. Phys. 29 (1979) 499

    Google Scholar 

  21. P.Z. Quintas et al. (CCFR Collab.), Phys. Rev. Lett. 71 (1993) 1307

    Google Scholar 

  22. W.C. Leung et al. (CCFR Collab.), Phys. Lett. B 317 (1993) 655

    Google Scholar 

  23. The parton distributions are parameterized at a reference scaleμ 20 byxq NS (x,μ 20 )=A NS x η 1(1-x)η 2+B NS x η 3,xq SI (x,μ 20 )=xq NS (x,μ 20 )+A sea(1-x)η sea and\(xg(x,\mu _{\text{0}}^{\text{2}} ) = A_g (1 - x{\text{)}}^{\eta _g } \) and evolved to all other values ofμ 2 using the GLAP [10] evolution equations.A NS is constrained by the fermion conservation sum rule\(\int {\tfrac{{dx}}{x}xq_{NS} (x{\text{) = 3}}} \), andA g is constrained by the momentum sum rule\(\int {dx {\text{[}}xq} _{SI} (x{\text{)}} + xg{\text{(}}x{\text{)] = 1}}\). The final fit parameter is the strong coupling constant, given by\(\Lambda _{\overline {MS} } \), for a total of eight fit parameters. Atμ 20 =1 GeV2/c2, the parameters are\(\Lambda _{\overline {MS} } \)=0.210±0.021 GeV/c,η 1=0.947±0.027,η 2=3.81±0.059,η 3=0.0519±0.0064,B NS =0.0210±0.0039,A sea=1.404±0.047,η sea=6.49±0.22,η g =3.18±0.70, where the errors are statistical only

  24. W.G. Seligman et al. (CCFR Collab.), in: Proc. XXVIIIth Rencontre de Moriond: QCD and High Energy Hadronic Interactions (Les Arcs, March 1993), ed. J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, 1993) p. 39

    Google Scholar 

  25. D. Duke and J. Owens, Phys. Rev. D 30 (1984) 49

    Google Scholar 

  26. P. Amaudruz et al. (NMC Collab.), Nucl. Phys. B 371 (1992) 3

    Google Scholar 

  27. K. Hikasa et al. (Particle Data Group), Phys. Rev. D 45 (1992)

  28. C. Peterson et al., Phys. Rev. D 27 (1983) 105

    Google Scholar 

  29. J.C. Anjos et al. (E691 Collab.), Phys. Rev. Lett. 65 (1990) 2503

    Google Scholar 

  30. J.C. Collins, in: Proc. XXVth Rencontre de Moriond: High Energy Hadronic Interactions (Les Arcs, March 1990), ed. J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, 1990), p. 123

    Google Scholar 

  31. M. Virchaux and A. Milsztajn, Phys. Lett. B 274 (1992) 221

    Google Scholar 

  32. M. Arneodo et al. (NMC Collab.), Phys. Lett. B 309 (1993) 222

    Google Scholar 

  33. S.J. Brodsky, C. Peterson and N. Sakai, Phys. Rev. D 23 (1981) 2745

    Google Scholar 

  34. M. Burkardt and B.J. Warr, Phys. Rev. D 45 (1992) 958; J.D. Bjorken, private communication

    Google Scholar 

  35. T. Bolton, Nevis R#501

  36. D. Bortoletto et al. (CLEO Collab.), Phys. Rev. D 37 (1988) 1719

    Google Scholar 

  37. A. Bodek et al., Phys. Rev. Lett. 50 (1983) 1431; 51 (1983) 534

    Google Scholar 

  38. P. Amaudruz et al. (NMC Collab.), Phys. Lett. B 295 (1992) 159

    Google Scholar 

  39. A.C. Benvenuti et al. (BCDMS Collab.), Phys. Lett. B 223 (1989) 485; B 237 (1990) 592

    Google Scholar 

  40. A. Donnachie and P.V. Landshoff, Z. Phys. C 61 (1994) 139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

CCFR Collaboration., Bazarko, A.O., Arroyo, C.G. et al. Determination of the strange quark content of the nucleon from a next-to-leading-order QCD analysis of neutrino charm production. Z. Phys. C - Particles and Fields 65, 189–198 (1995). https://doi.org/10.1007/BF01571875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01571875

Keywords

Navigation