Skip to main content
Log in

Use of the polymerase chain reaction to study the relationship between human papillomavirus infections and cervical cancer

  • Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Although it is now evident that human papillomaviruses (HPV) are strongly associated with cervical cancer, their etiological role in the oncogenesis of this disease is still unknown. However, HPV screening may identify women at risk of acquiring this disease. With the recent development of the polymerase chain reaction (PCR), it has become possible to detect small numbers of human papillomavirus genomes in clinical samples. The sensitivity and specificity of this technique, together with the possibility of performing the test on crude cervical scrapes, makes PCR the method of choice for screening. In this paper, data on the detection of human papillomavirus by PCR are presented and the applicability of this technique for the screening of human papillomavirus genotypes is evaluated. The question arises whether screening for diagnostic purposes must include all the human papillomavirus types associated with infections of the genital tract or only those which are strongly associated with cervical cancer (HPV 16 and HPV 18). It is proposed that an international council must be created that is responsible for standardised epidemiological screening strategies and follow-up programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parkin DM, Laara E, Muir CS Estimates of the worldwide frequency of sixteen major cancers in 1980. International Journal of Cancer 1988, 41: 184–197.

    Google Scholar 

  2. Miller AB Evaluation of the impact of screening for cancer of the cervix. In: Hakama M, Miller AB, Day (ed): Screening for cancer of the uterine cervix. IARC Scientific Publications, Lyon, 1986, p. 149–161.

    Google Scholar 

  3. Centraal Bureau voor de Statistiek Nederland Primaire doodsoorzaken, absolute aantallen. CBS annual publication, Serie A1. CBS, 's-Gravenhage, The Netherlands, 1984.

    Google Scholar 

  4. Peto R Introduction: geographic patterns and trends. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, p. 3–17.

    Google Scholar 

  5. Brinton LA Current epidemiological studies; emerging hypothesis. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, p. 17–28.

    Google Scholar 

  6. Richart RM, Barron BA Screening strategies for cervical cancer and cervical intraepithelial neoplasia. Cancer 1981, 47: 1176–1181.

    PubMed  Google Scholar 

  7. Brinton LA, Fraumeni JF Epidemiology of uterine cervical cancer. Journal of Chronical Diseases 1986, 39: 1051–1056.

    Article  Google Scholar 

  8. Kessler II Cervical cancer: social and sexual correlates. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, p. 55–64.

    Google Scholar 

  9. Buckley JD, Harris RW, Doll R, Vessey MP, Williams PT Case-control study of the husbands of women with dysplasia or carcinoma of the cervix uteri. Lancet 1981, ii: 1010–1015.

    Article  Google Scholar 

  10. Smith PG, Kinlen LJ, White G, Adelstein A, Fox A Mortality of wives of men dying with cancer of the penis. British Journal of Cancer 1980, 41: 422–428.

    PubMed  Google Scholar 

  11. Rawls WE, Tompkins WAF, Figuero ME, Melnick J Herpes simplex virus type 2: association with carcinoma of the cervix. Science 1968, 161: 1255–1256.

    PubMed  Google Scholar 

  12. Nahmias AJ, Josey WE, Naib ZM, Luce CF, Guest BA Antibodies to herpes virus hominis types I and II in humans: II. Women with cervical cancer. American Journal of Epidemiology 1970, 91: 547–552.

    PubMed  Google Scholar 

  13. zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW Attempts to detect virus specific DNA sequences in human tumors. I: Nucleic acid hybridization with complementary RNA of human wart virus. International Journal of Cancer 1974, 13: 650–656.

    Google Scholar 

  14. Vonka V, Kanka J, Jelinek J, Subrt I, Suchanek A, Havrankova A, Vachal M, Hirsch I, Domorazkova H, Richterova V, Naprstkova J, Dvorakova V, Svoboda B Prospective study on the relationship between cervical neoplasia and herpes simplex type-2 virus. I: Epidemiological characteristics. International Journal of Cancer 1984, 33: 49–60.

    Google Scholar 

  15. Vonka V, Kanka J, Hirsch I, Kremar M, Suchnakova A, Zavadova H, Jelinek J Prospective study on the association between herpes simplex type 2 and cervical neoplasia. In: De Palo G, Rilke F, zur Hausen H (ed): Herpes and papillomaviruses. Raven Press, New York 1986, p. 45–54.

    Google Scholar 

  16. Shope RE Infectious papillomatosis of rabbits; with a note on the histopathology. Journal of Experimental Medicine 1933, 58: 607–624.

    Article  Google Scholar 

  17. Quick CA, Watts SL, Krzyzek RA, Faras AJ Relationship between condylomata and laryngeal papillomata. Annals of Otology 1980, 89: 467–471.

    Google Scholar 

  18. Pfister H Biology and biochemistry of papillomaviruses. Reviews of Physiology, Biochemistry and Pharmacology 1984, 99: 111–181.

    Google Scholar 

  19. Coggin JR, zur Hausen H Workshop on papillomaviruses and cancer. Cancer Research 1979, 39: 545–546.

    Google Scholar 

  20. Munoz N, Bosch X, Kaldor JM Does human papillomavirus cause cervical cancer? The state of the epidemiological evidence. British Journal of Cancer 1988, 57: 1–5.

    PubMed  Google Scholar 

  21. Gissmann L, Schneider A The role of human papillomaviruses in genital cancer. In: De Palo G, Rilke F, zur Hausen H (ed): Herpes and papillomaviruses. Raven Press, New York 1986, p. 15–24.

    Google Scholar 

  22. Durst M, Gissmann L, Ikenberg H, zur Hausen H A papillomavirus DNA from a cervical cancer and its prevalence in cancer biopsy samples form different geographic regions. Proceedings of the National Academy of Sciences of the United States of America 1983, 80: 3812–3815.

    PubMed  Google Scholar 

  23. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO Journal 1984, 3: 1151–1157.

    PubMed  Google Scholar 

  24. Munoz N, Bosch FX Epidemiological studies implicating human papillomavirus in the causation of carcinoma of the lower genital tract. In: De Palo G, Rilke F, zur Hausen H (ed): Herpes and papillomaviruses. Raven Press, New York 1988, p. 97–114.

    Google Scholar 

  25. Gissmann L, Wolnik L, Ikenberg H, Koldovosky U, Schnurch HG, zur Hausen H Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proceedings of the National Academy of Sciences of the USA 1983, 80: 560–563.

    PubMed  Google Scholar 

  26. Campion MJ, Cuzick J, McCance DJ, Singer A Progressive potential of mild cervical dysplasia: prospective cytologic, colposcopic and virologic study. Lancet 1986, ii: 237–240.

    Article  Google Scholar 

  27. Stoler MH, Broker TR In situ hybridization detection of HPV DNA's and messenger RNA's in genital condylomas and a cervical cancer. Human Pathology 1986, 17: 1250–1258.

    PubMed  Google Scholar 

  28. Walboomers J, Melchers W, Mullink H, Meijer C, Struyk A, Quint W, van der Noordaa J, ter Schegget J Sensitivity of in situ detection with biotinylated probes of HPV 16 DNA in frozen tissue sections of squamous cell carcinomas of the cervix. American Journal of Pathology 1988, 131: 587–595.

    PubMed  Google Scholar 

  29. Durst M, Schwartz E, Gissmann L Integration and persistence of human papillomavirus DNA in genital tumors. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, p. 273–280.

    Google Scholar 

  30. Durst H, Kleinheinz A, Hotz M, Gissmann L The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumors. Journal of General Virology 1985, 66: 1515–1522.

    PubMed  Google Scholar 

  31. Burghardt E Natural history of cervical lesions. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, p. 81–89.

    Google Scholar 

  32. Sneider-Maunoury S, Croissant O, Orth G Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors. Journal of Virology 1987, 61: 3295–3298.

    PubMed  Google Scholar 

  33. Schwartz E, Freese UK, Gissmann L, Mayer W, Roggenbruck B, Stremlau A, zur Hausen H Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985, 314: 111–114.

    Article  PubMed  Google Scholar 

  34. Howley PM General and molecular biology of papillomaviruses. In: De Palo G, Rilke F, zur Hausen H (ed): Herpes and papillomaviruses. Raven Press, New York 1988, p. 41–52.

    Google Scholar 

  35. Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. Journal of Virology 1987, 61: 962–971.

    PubMed  Google Scholar 

  36. Smotkin D, Wettstein FO Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences of the USA 1986, 83: 4680–4684.

    PubMed  Google Scholar 

  37. Schneider-Gadicke A, Schwartz E Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO Journal 1986, 5: 2285–2292.

    PubMed  Google Scholar 

  38. Durst M, Croce CM, Gissmann L, Schwartz E, Huebner K Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proceedings of the National Academy of Sciences of the USA 1987, 84: 1070–1074.

    PubMed  Google Scholar 

  39. Smiths HL, Raadsheer E, Rood S, Mehendale S, Slater RM, van der Noordaa J, ter Schegget J Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA. Journal of Virology 1988, 62: 4538–4543.

    PubMed  Google Scholar 

  40. Vousden KH, Parmjit SJ Functional similarity between HPV 16 E7, SV40 large T and adenovirus E1A proteins. Oncogene 1989, 4: 153–158.

    PubMed  Google Scholar 

  41. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988, 334: 124–129.

    Article  PubMed  Google Scholar 

  42. Paterson-Vessey M Epidemiology of cervical cancer: role of hormonal factors, cigarette smoking and occupation. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, 21: 29–43.

    Google Scholar 

  43. zur Hausen H Human genital cancer: synergism between two virus infections or synergism between a virus infection and initiating events. Lancet 1982, ii: 1370–1372.

    Article  Google Scholar 

  44. La Vecchia C, Franceschi S, Decarli A, Fasoli M, Gentile A, Tognoni G Cigarette smoking and the risk of cervical neoplasia. American Journal of Epidemiology 1986, 123: 22–29.

    PubMed  Google Scholar 

  45. Roman A, Fife KH Human papillomaviruses: are we ready to type? Clinical Microbiology Reviews 1989, 2: 166–190.

    PubMed  Google Scholar 

  46. Lorinez AT, Lancaster WD, Kurman RJ, Bennet-Jenson A, Temple G Characterization of human papillomaviruses in cervical neoplasia and their detection in routine clinical screening. In: Peto R, zur Hausen H (ed): Viral etiology of cervical cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986, 21: 225–237.

    Google Scholar 

  47. Brandsma J, Burk RD, Lancaster WD, Pfister H, Schiffman MH Interlaboratory variation as an explanation for varying prevalence estimates of human papillomavirus infection. International Journal of Cancer 1989, 43: 260–262.

    Google Scholar 

  48. Wagner D, Ikenberg H, Boehm N, Gissmann L Identification of human papillomavirus in cervical swabs by deoxyribonucleic acid in situ hybridization. Obstetrics and Gynecology 1984, 64: 767–772.

    PubMed  Google Scholar 

  49. Melchers WJG, Herbrink P, Walboomers JMM, Meijer CJLM, van de Drift H, Lindeman J, Quint WGV Optimization of human papillomavirus genotype detection in cervical scrapes by a modified filter in situ hybridization test. Journal of Clinical Microbiology 1989, 27: 106–110.

    PubMed  Google Scholar 

  50. de Villiers EM, Schneider A, Miklaw H, Papendick U, Wagner D, Wesch H, Wahrendorf J, zur Hausen H Human papillomavirus infections in women with and without abnormal cervical cytology. Lancet 1987, ii: 703–705.

    Article  Google Scholar 

  51. Henderson BR, Thompson CH, Rose BR, Cossart YE, Morris BJ Detection of specific types of human papillomavirus in cervical scrapes, anal scrapes, and anogenital biopsies by DNA hybridization. Journal of Medical Virology 1987, 21: 381–393.

    PubMed  Google Scholar 

  52. Shah KV, Gupta JW, Stoler MH The in situ hybridization test in the diagnosis of human papillomaviruses. In: De Palo G, Rilke F, zur Hausen H (ed): Herpes and papillomaviruses. Raven Press, New York 1986, p. 225–237.

    Google Scholar 

  53. Shibata D, Fu YS, Gupta JW, Shah KV, Arnheim N, Martin WJ Methods in Laboratory investigation. Detection of human papillomavirus in normal and dysplastic tissue by the polymerase chain reaction. Laboratory Investigation 1988, 59: 555–559.

    PubMed  Google Scholar 

  54. Cornelissen MTE, van den Tweel JG, Struyk APHB, Jebbink MF, Briët M, van der Noordaa J, ter Schegget J Localization of human papillomavirus type 16 DNA using the polymerase chain reaction in the cervix uteri of women with cervical intraepithelial neoplasia. Journal of General Virology 1989, 70: 2555–2562.

    PubMed  Google Scholar 

  55. Claas E, Melchers W, van de Linden J, Lindeman J, Quint W Human papillomavirus detection in paraffin embedded cervical carcinomas and metastases of the carcinomas by the polymerase chain reaction. American Journal of Pathology 1989, 135: 703–709.

    PubMed  Google Scholar 

  56. Nuovo GJ Human papillomavirus DNA in genital tract lesions histologically negative for condylomata. Analysis by in situ, southern blot hybridization and the polymerase chain reaction. American Journal of Surgical Pathology 1990, 14: 643–651.

    PubMed  Google Scholar 

  57. Resnick RM, Cornelissen MTE, Wright DK, Eichinger GH, Fox HS, ter Schegget J, Manos MM Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. Journal of the National Cancer Institute 1990, 82: 1477–1484.

    PubMed  Google Scholar 

  58. Haase AT, Retzel EF, Staskus KA Amplification and detection of lentiviral DNA inside cells. Biochemistry 1990, 87: 4971–4975.

    Google Scholar 

  59. Melchers W, van de Brule A, Walboomers J, de Bruin M, Burger M, Herbrink P, Meijer C, Lindeman J, Quint W Increased detection rate of human papillomavirus in cervical scrapes by the polymerase chain reaction as compared to modified FISH and southern blot analysis. Journal of Medical Virology 1989, 27: 329–335.

    PubMed  Google Scholar 

  60. Morris BJ, Rose BR, Flanagan JL, McKinnon KJ, Loo CY, Thompson CH, Flampoulidou M, Ford RM, Hunter JC, Nightingale BN, Cossart YE Automated polymerase chain reaction for papillomavirus screening of cervicovaginal lavages: comparison with dot-blot hybridization in a sexually transmitted diseases clinic population. Journal of Medical Virology 1990, 32: 22–30.

    PubMed  Google Scholar 

  61. Burmer GC, Parker JD, Bates J, East K, Kulander BG Comparative analysis of human papillomavirus detection by polymerase chain reaction and Virapap/Viratype kits. American Journal of Clinical Pathology 1990, 94: 554–559.

    PubMed  Google Scholar 

  62. Higuchi R Rapid, efficient DNA extraction for PCR from cells or blood. Amplifications 1989, 2: 1–3.

    Google Scholar 

  63. Van den Brule AJC, Meijer CJLM, Bakels V, Kenemans P, Walboomers JMM Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. Journal of Clinical Microbiology 1990, 28: 2739–2743.

    PubMed  Google Scholar 

  64. McNicol PJ, Dodd JG Detection of human papillomavirus DNA in prostate gland tissue by using the polymerase chain reaction amplification assay. Journal of Clinical Microbiology 1990, 28: 409–412.

    PubMed  Google Scholar 

  65. Melchers W, Schift R, Stolz E, Lindeman J, Quint W Human papillomavirus detection in urine samples from male patients by the polymerase chain reaction. American Journal of Pathology 1989, 135: 703–709.

    PubMed  Google Scholar 

  66. Anceschi MM, Falcinelli C, Pieretti M, Cosmi EV Multiple primer pairs PCR for the detection of HPV types. Journal of Virological Methods 1990, 28: 59–66.

    Article  PubMed  Google Scholar 

  67. Pao CC, Lin CY, Maa JS, Lai CH, Wu SY, Soong YK Detection of human papillomaviruses in cervicovaginal cells using polymerase chain reaction. Journal of Infectious Diseases 1990, 161: 113–115.

    PubMed  Google Scholar 

  68. Morris BJ, Flanagan JL, McKinnon KJ, Nightingale BN Papillomavirus screening of cervical lavages by polymerase chain reaction. Lancet 1988, ii: 1368.

    Article  Google Scholar 

  69. Dallas PB, Flanagan JL, Nightingale BN, Morris BJ Polymerase chain reaction for fast, nonradioactive detection of high- and low-risk papillomavirus types in routine cervical specimens and in biopsies. Journal of Medical Virology 1989, 27: 105–111.

    PubMed  Google Scholar 

  70. Kwok S, Higuchi R Avoiding false positives with PCR. Nature 1989, 339: 237–238.

    Article  PubMed  Google Scholar 

  71. Tidy JA, Vousden KH, Farrell PJ Relation between infection with a subtype of HPV 16 and cervical neoplasia. Lancet 1989, i: 1225–1227.

    Article  Google Scholar 

  72. Tidy JA, Parry GCN, Ward P, Coleman DV, Peto J, Malcolm ADB, Farrell PJ High Rate of HPV type 16 infection in cytologically normal cervices. Lancet 1989, i: 434.

    Article  Google Scholar 

  73. Tidy J, Farrell PJ Retraction: Human papillomavirus subtype 16b. Lancet 1989, ii: 1535.

    Article  Google Scholar 

  74. Kitchin PA, Szotyori Z, Fromholc C, Almond N Avoidance of false positives. Nature 1990, 244: 201.

    Article  Google Scholar 

  75. Beyer-Finkler E, Pfister H, Girardi F Anti-contamination primers to improve specificity of polymerase chain reaction in human papillomavirus screening. Lancet 1990, ii: 1289–1290.

    Article  Google Scholar 

  76. van den Brule AJC, Class ECJ, du Maine M, Melchers WJG, Helmerhorst T, Quint WGV, Lindeman J, Meijer CJLM, Walboomers JMM Use of anticontamination primers in the polymerase chain reaction for the detection of human papillomavirus genotypes in cervical scrapes and biopsies. Journal of Medical Virology 1989, 29: 20–27.

    PubMed  Google Scholar 

  77. Claas E, Melchers W, Quint W The polymerase chain reaction for the detection of genital human papillomavirus infections. In: Howley P, Broker T (ed): Papillomaviruses. UCLA Symposia on Molecular and Cellular Biology. Alan R. Liss, New York, 1990, p. 45–53.

    Google Scholar 

  78. Snijders PJF, van den Brule AJC, Schrijnemakers HFJ, Snow G, Meijer CJLM, Walboomers JMM The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. Journal of General Virology 1990, 71: 173–181.

    PubMed  Google Scholar 

  79. Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 1989, 7: 209–214.

    Google Scholar 

  80. van den Brule AJC, Snijders PJF, Gordijn RLJ, Bleker OP, Meijer CJLM, Walboomers JMM General primer-mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. International Journal of Cancer 1990, 45: 644–649.

    Google Scholar 

  81. Gregoire L, Arella M, Campione-Piccardo J, Lancaster WD Amplification of human papillomavirus DNA sequences by using conserved primers. Journal of Clinical Microbiology 1989, 27: 2660–2665.

    PubMed  Google Scholar 

  82. Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A Amplification and typing of multiple cervical cancer-associated HPV DNA's using a single pair of primers. International Journal of Cancer 1990, 45: 990–992.

    Google Scholar 

  83. Tidy JA, Mason P, Farrell PJ A new and sensitive method for screening for human papillomavirus infection. Obstetrics and Gynecology 1989, 74: 410–414.

    PubMed  Google Scholar 

  84. Young LS, Bevan IS, Johnson MA, Blomfield PI, Bromidge T, Maitland NJ, Woodman CBJ The polymerase chain reaction: a new epidemiological tool for investigating cervical human papillomavirus infection. British Medical Journal 1989, 298: 14–18.

    PubMed  Google Scholar 

  85. Kiyabu MT, Shibata D, Arnheim N, Martin WJ, Fitzgibbons PL Detection of human papillomavirus in formalin-fixed, invasive squamous carcinomas using the polymerase chain reaction. American Journal of Surgical Pathology 1989, 13: 221–224.

    PubMed  Google Scholar 

  86. Cornelissen MTE, Smits HL, Briët MA, van den Tweel JG, Struyk APHB, van der Noordaa J, ter Schegget J Uniformity of the splicing pattern of the E6/E7 transcripts in human papillomavirus type 16-transformed human fibroblasts, human cervical premalignant lesions and carcinomas. Journal of General Virology 1990, 71: 1243–1246.

    PubMed  Google Scholar 

  87. Johnson MA, Blomfield PI, Bevan IS, Woodman CBJ, Young LS Analysis of human papillomavirus type 16 E6–E7 transcription in cervical carcinomas and normal cervical epithelium using the polymerase chain reaction. Journal of General Virology 1990, 71: 1473–1479.

    PubMed  Google Scholar 

  88. Rotenberg MO, Chow LT, Broker TR Characterization of rare human papillomavirus type 11 mRNAs coding for regulatory and structural proteins, using the polymerase chain reaction. Virology 1989, 172: 489–497.

    Article  PubMed  Google Scholar 

  89. Barnes W, Delgado G, Kurman RJ, Petrilli ES, Smith DM, Ahmed S, Lorinz AT, Temple GF, Bennet-Jenson A, Lancaster WD Possible prognostic significance of human papillomavirus type in cervical cancer. Gynecologic Oncology 1988, 29: 267–273.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchers, W.J.G., Claas, H.C.J. & Quint, W.G.V. Use of the polymerase chain reaction to study the relationship between human papillomavirus infections and cervical cancer. Eur. J. Clin. Microbiol. Infect. Dis. 10, 714–727 (1991). https://doi.org/10.1007/BF01972496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972496

Keywords

Navigation