Skip to main content
Log in

Relaxivity and molecular dynamics of spin labeled polysaccharides

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Synthetic methods are described leading to polysubstituted spin labeled polysaccharides (dextran 70, 110, 200, and arabinogalactan), which are potential contrast agents in magnetic resonance imaging. The nitroxyl moieties bound to a polysaccharide yield relaxivity enhanced by a factor of 1.6 (at 0.47 T and 37°C) compared to that of the small hydrophilic radicals. An EPR study at variable temperature and viscosity (by adding sucrose) reveals the presence of two mobile bound spin labels. The less mobile ones are characterized by an order parameterS≅0.6 and a macromolecular rotational correlation time of ∼1.6 ns at 20°C for the substituted dextrans. Substitution rate effects are observed and might be related to conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colacicchi S, Ferrari M, Sotgiu A (1992)In vivo electron paramagnetic resonance spectroscopy/imaging: first experiences, problems, and perspectives.Int J Biochem 24 205–214.

    Google Scholar 

  2. Lurie DJ, Bussell DM, Bell LH, Mallard JR (1988) Proton-electron double magnetic resonance imaging of free radical solutions.J Magn Reson 76: 366–370.

    Google Scholar 

  3. Grucker D (1990)In vivo detection of injected free radicals by Overhauser effect imaging.Magn Reson Med 14: 140–147.

    Google Scholar 

  4. Swartz HM (1987) Use of nitroxides to measure redox metabolism in cells and tissues.J Chem Soc Faraday Trans 83: 191–202.

    Google Scholar 

  5. Swartz HM (1989) Metabollically responsive contrast agents. InAdvances in Magnetic Resonance Imaging, (Feig E, ed) Norwood, NJ: Ablex Publishing Company.

    Google Scholar 

  6. Swartz HM, Glockner JF (1989) Measurements of the concentration of oxygen in biological systems using EPR techniques. InAdvanced EPR in Biology and Biochemistry (Hoff AT, ed) pp. 753–782. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  7. Swartz HM, Glockner JF (1991) Measurement of oxygen by EPRI and EPRS. InEPR Imaging and In Vivo EPR (Eaton GR, Eaton SS, Ohno K, eds), pp. 261–290. Boca Raton, FL: CRC Press.

    Google Scholar 

  8. Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential applications.Radiology 147: 781–788.

    Google Scholar 

  9. Gallez B, Demeure R, Debuyst R, Leonard D, Dejehet R, Dumont P (1992) Evaluation of nonionic nitroxyl lipids as potential organ-specific contrast agents.Magn Reson Imaging 10: 445–455.

    Google Scholar 

  10. Gallez B, Debuyst R, Demeure R, Dejehet F, Grandin C, Van Beers B, Taper H, Pringot J, Dumont P (1993) Evaluation of a nitroxyl fatty acid as liver contrast agent.Magn Reson Med 30: 592–599.

    Google Scholar 

  11. Reynolds JEF (ed) (1989) Blood products and substitutes.Martindale, 29th ed, pp. 814–816. London: The Pharmaceutical Press.

    Google Scholar 

  12. Beuth J, Ko HL, Oette K, Pulverer G, Roszkowski K, Uhlenbruck G (1987) Inhibition of liver metastasis in mice by blocking hepatocyte lectins with arabinogalactan infusions andd-galactose.J Cancer Res Clin Oncol 113: 51–55.

    Google Scholar 

  13. Vansteenkiste S, Schacht E, Duncan R, Seymour L, Pawluczyk I, Baldwin R (1991) Fate of glycosylated dextrans afterin vivo administration.J Controlled Release 16: 91–100.

    Google Scholar 

  14. Weissleder R, Reimer PE, Lee AS, Wittenberg J, Brady TJ (1990) MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors.Am J Roentgenol 155: 1161–1167.

    Google Scholar 

  15. Slane JMK, Lai C-S, Hyde JS (1986) A proton relaxation enhancement investigation of the binding of fatty acid spin labels to human serum albumin.Magn Reson Med 3: 699–706.

    Google Scholar 

  16. Bennett HF, Brown RD, Keana JFW, Koenig SH, Swartz HM (1990) Interactions of nitroxides with plasma and blood: effect on 1/T1 of water protons.Magn Reson Med 14: 40–55.

    Google Scholar 

  17. Vallet P (1992) Relaxivité des radicaux libres stables de type nitroxyde. Evaluation par la méthode du champ cyclé et optimisation. Ph.D. Thesis, Université de Mons-Hainaut, Belgium.

    Google Scholar 

  18. Corey EJ, Chaykovsky M (1965) Methylsulfinyl carbanion. Formation and applications to organic synthesis.J Amer Chem Soc 87: 1345–1355.

    Google Scholar 

  19. Mawhinney TP, Florine KL, Feather MS, Cowan DL (1983) Spin-labeling of polysaccharides by esterification using chloroformyl-2,2,5,5-tetramethylpyrroline-l-oxide. Carbohydr Reson116 C1-C4.

    Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances.Anal Chem 28: 350–356.

    Google Scholar 

  21. Kivelson D (1960) Theory of ESR linewidths of free radicals. JChem Phys 33: 1094–1106.

    Google Scholar 

  22. Tormala P (1979) Spin label and probe studies of polymeric solids and melts. J Macrol Sci-Rev Macrol ChemC17 297–357.

    Google Scholar 

  23. Poggi G, Johnson CS (1970) Factors involved in the determination of rotational correlation times for spin labels.J Magn Reson 3: 436–445.

    Google Scholar 

  24. Timofeev VP, Dudich IV, Volkenstein MV (1980) Comparative study of dynamic structure of pig and chicken aspartate aminotransferases by measuring the rotational correlation time.Biophys Struct Mech 7: 41–49.

    Google Scholar 

  25. Timofeev VP, Tsetlin VI (1983) Analysis of mobility protein side chains by spin label technique.Biophys Struct Mech 10: 93–108.

    Google Scholar 

  26. Timofeev VP (1986) Segmental mobility of Poly(U) and the spin label method.Molek Biol (USSR) 20: 697–711.

    Google Scholar 

  27. Gallez B, Lacour V, Demeure R, Debuyst R, Dejehet F, De Keyser J-L, Dumont P (1994) Spin labelled arabinogalactan as MRI contrast agent.Magn Reson Imaging 12: 61–69.

    Google Scholar 

  28. Florine KI, Cowan DL, Mawhinney TP (1984) Molecular motion of spin-labelled dextrans in dilute aqueous solution.Macromolecules 17: 2417–2420.

    Google Scholar 

  29. Fischman ML, Damert WC, Philips JG, Barford RA (1987) Evaluation of root-mean-square radius of gyration as a parameter for universal calibration of polysaccharides.Carbohydr Res 160: 215–225.

    Google Scholar 

  30. Basedow AM, Ebert KH, Feigenbutz W (1980) Polymer-solvent interactions: dextran in water and DMSO.Makromol Chem 181: 1071–1080.

    Google Scholar 

  31. Gantchev TG, Shopova MB (1990) Characterization of spin-labeled fatty acids and hematoporphyrin binding sites interactions in serum albumin.Biochim Biophys Acta 1037 422–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address for correspondence: Laboratory of Medicinal Chemistry, CMFA/UCL 7340, Avenue E. Mounier, B-1200 Brussels, Belgium. Additional reprints of this chapter may be obtained from the Reprints Department, Chapman & Hall, One Penn Plaza, New York, NY 10119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallez, B., Debuyst, R., Dejehet, F. et al. Relaxivity and molecular dynamics of spin labeled polysaccharides. MAGMA 2, 61–68 (1994). https://doi.org/10.1007/BF01709801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01709801

Keywords

Navigation