Skip to main content
Log in

Preliminary development of a radiotelemetry system for biological applications

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The design and prototype realisation of a complete radiotelemetry system for long-term monitoring of laboratory animals is described. The transmitter component is potentially implantable and transcutaneously powered using a single-component 200 kHz magnetic field. Monitoring of up to four data channels is possible using time-division multiplexing. The FM carrier is quartz crystal controlled to ensure long-term system stability and satisfy UK biomedical telemetry regulations. Implementation of the system would now require miniaturisation of the implantable transmitter component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amlaner, C. J. andMacDonald, D. W. (1980)A handbook on biotelemetry and animal tracking. Pergamon, Oxford.

    Google Scholar 

  • Arakelian, R. andDriscoll, M. M. (1977) Linear crystal controlled FM source for mobile radio application. Proceedings of 31st Annual Symposium on Frequency Control, June, 400–406.

  • Collier, R. J., Diprose, M. F. andCrawley, B. E. (1976) A low-power transmitter for electrocardiograms using tunnel diodes.Med. & Biol. Eng.,14, 359–360.

    Google Scholar 

  • Cools, A. R., Lambrechts, P. andvan Bommel, J. (1978) Wireless power-supplying system for implanted electronic circuits in freely moving animals.Med. & Biol. Eng. & Comput.,16, 559–563.

    Google Scholar 

  • Driscoll, M. M. andHealey, D. J. (1971) Voltage-controlled crystal oscillators.IEEE Trans.,ED-18, 528–535.

    Article  Google Scholar 

  • Forster, I. C. (1974) A radiotelemetry system for recording neural signals from the brain of a freely moving cat. M. Appl. Sc. thesis, University of Melbourne.

  • Forster, I. C. (1978) The bioengineering development of a hearing prosthesis for the profoundly deaf. Ph.D. thesis, University of Melbourne.

  • Garner, P. J. (1978) Voltage controlled crystal oscillators. Conference on Radio Receivers and Associated Systems (UK), July, 227–235.

  • Golding, E. W. (1940)Electrical measurements and measuring instruments, 3rd edn. Pitman & Sons, London.

    Google Scholar 

  • Gray, P. E. andSearle, C. L. (1969)Electronic principles. Wiley, New York.

    Google Scholar 

  • Home Office (1978) Performance specification. Medical and biological devices. MPT 312, HMSO, London.

    Google Scholar 

  • Johnson, C. C. andGuy, A. W. (1972) Nonionizing electromagnetic wave effects in biological material and systems.Proc. IEEE,60, 692–718.

    Article  Google Scholar 

  • Ko, W. H., Liang, S. P. andFung, C. D. F. (1977) Design of radio-frequency powered coils for implant instruments.Med. & Biol. Eng. & Comput.,15, 634–640.

    Google Scholar 

  • Ko, W. H. andLiang, S. P. (1980) RF powered cage system for implant biotelemetry.IEEE Trans.,BME-27, 460–467.

    Google Scholar 

  • Lane, M. (1970) Transistor crystal oscillators to cover the frequency range 1 kHz–100 MHz. Australian Post Office Research Laboratories, Report 6513.

  • Langford-Smith, F. (1953)Radio designer's handbook, 4th ed. Iliffe, London.

    Google Scholar 

  • Lipoff, S. J. (1976) Design of voltage-controlled crystal oscillators. Proceedings of 30th Annual Symposium Frequency Control, June, 301–308.

  • MacKay, R. S. (1970)Bio-medical telemetry.2nd edn. Wiley, New York.

    Google Scholar 

  • Plessey (1979) TAB 1042/3/4 Quad programmable operational amplifiers. Application notes, PS 1665.

  • Reich, H. J. (1961)Functional circuits and oscillators. Van Nostrand, Princeton, New Jersey, USA.

    Google Scholar 

  • Schuder, J. C. andStephenson, H. E. (1963) Energy transport into a closed chest from a set of large mutually orthogonal coils.Commun. Elect.,64, 527–534.

    Google Scholar 

  • Schuder, J. C. andStephenson, H. E. (1965) Energy transport to a coil which circumscribes a ferrite core and is implanted within a body.IEEE Trans.,BME-12, 154–163.

    Google Scholar 

  • Schwan, H. (1963) Determination of biological impedances. InPhysical techniques in biological research, vol. VIB.Nastuk, W. L. (Ed.), Academic Press, New York.

    Google Scholar 

  • Sokal, N. O. andSokal, A. D. (1975) Class E—a new class of high efficiency tuned single ended switching power amplifiers.IEEE J,SC-10, 168–176.

    Google Scholar 

  • Stanesby, H. andFryer, P. W. (1947) Variable-frequency crystal oscillators.J. IEE, IIIa, 368–378.

    Google Scholar 

  • Welsby, V. G. (1960)The theory and design of inductance coils.2nd edn. MacDonald, London.

    Google Scholar 

  • Ysenbrandt, H. J. B., Selten, Th. A. J.,Verschuren, J. J. M., Kolk, T. andKimmich, H. P. (1976) Biotelemetry-literature survey of the past decade.Biotelem.,3, 145–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, I.C. Preliminary development of a radiotelemetry system for biological applications. Med. Biol. Eng. Comput. 24, 281–291 (1986). https://doi.org/10.1007/BF02441625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441625

Keywords

Navigation