Skip to main content
Log in

Cerebro-cerebellar learning loops in apes and humans

  • Original Articles
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

In the cerebro-cerebellar system of anthropoid apes and humans, the cerebellum seems able to contribute not only to motor skills but also to mental and language skills. Anatomical evidence suggests that in these species the cerebellum can function at two different hierarchical levels. At a lower level, the cerebellum can supply signals to the frontal motor areas for effecting the manipulation of muscles. At a higher level, the cerebellum can supply signals to some prefrontal areas for effecting the manipulation of symbols. At both levels, the cerebellum can function in essentially the same way: when incoming information is processed repeatedly in the neural loops in which the cerebellum is embedded, the cerebellum can learn to generate new sequences of signals, which constitute new programs for carrying out learned procedures. If cerebellar programs are used in the frontal motor areas (area 4 and are 6), motor manipulations can be effected rapidly and skillfully. Similarly, if cerebellar programs are used in some prefrontal areas (e.g., area 8 and the inferior frontal convolution), mental and language manipulations could be effected rapidly and skillfully. The cerebellum, in its contributions to these mental and language functions, as in its contributions to motor function, could serve as an adaptive mechanism whose signals enable the frontal cortex to execute learned procedures optimally. In the absence of such cerebellar signals, the frontal cortex would have to perform these procedures less rapidly and fluently. Modern testing techniques can reveal such a subtle difference in performance. These techniques are therefore now being used to test human subjects, in an attempt to validate or refute this broadened concept of cerebellar function. If the new concept is validated, it can provide powerful explanations for some unresolved mysteries about the human brain.

Sommario

Nel sistema cerebro-cerebellare delle scimmie antropoidi e degli uomini, il cervelletto sembra in grado di contribuire non soltanto all’abilità motoria, ma anche alle attività mentali e del linguaggio. I dati anatomici sembrano dimostrare che in queste specie il cervelletto può funzionare a 2 livelli gerarchici differenziati. Al livello inferiore, il cervelletto può inviare segnali alle aree motorie frontali, per effettuare il comando dei muscoli. A livello superiore, il cervelletto può inviare segnali ad alcune aree prefrontali, per attivare i simboli. Ai 2 livelli, il cervelletto può funzionare nella medesima maniera. Quando l’informazione in arrivo è fissata ripetutamente nei circuiti neurali cerebellari, il cervelletto può imparare a produrre nuove sequenze di segnali, che costituiscono nuovi programmi per realizzare le procedure apprese. Se i programmi cerebellari sono usati nelle aree motorie frontali 4 e 6, si verificano azioni motorie rapide ed abili; e similarmente, se i programmi cerebellari sono usati in alcune aree frontali, come l’area 8 e la circonvoluzione frontale inferiore, operazioni mentali e di linguaggio possono essere realizzate rapidamente ed abilmente. Il cervelletto, col suo contributo a queste funzioni mentali e del linguaggio o nell’azione motoria, può riuscire come un meccanismo adattativo, i cui segnali permettono alla corteccia frontale di eseguire in modo ottimale le procedure apprese. In assenza di questi segnali cerebellari, la corteccia frontale eseguirebbe queste procedure in modo meno fluente. Nuove tecniche di valutazione confermano queste differenze di performance. Perciò queste tecniche vengono adottate per testare soggetti umani, nel tentativo di confermare o rifiutare questo concetto più allargato delle funzioni cerebrali. Se questi nuovi concetti saranno convalidati, ne conseguirà la possibilità di avere spiegazioni su alcuni non risolti misteri del cervello umano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey P., Von Bonin G.:The Isocortex of Man. Urbana: University of Illinois Press 1951.

    Google Scholar 

  2. Beck E., Bignami A.:Some neuro-anatomical observations in cases with sterotactic lesions for the relief of Parkinsonism. Brain, 91: 589–618, 1968.

    CAS  PubMed  Google Scholar 

  3. Brodal A.:Neurological Anatomy in Relation to Clinical Medicine (3rd ed). New York: Oxford University Press, 1981.

    Google Scholar 

  4. Dow R.S.:Some novel concepts of cerebellar physiology. Mt. Sinai J. of Medicine 41: 103–119 1974.

    CAS  Google Scholar 

  5. Dow R.S., Moruzzi G.:The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press, 1958.

    Google Scholar 

  6. Eccles J.C.:The cerebellum as a computer: patterns in space and time: J. Physiol. 229: 1–32, 1973.

    CAS  PubMed  Google Scholar 

  7. Eccles J.C., Ito M., Szentàgothai J.:The Cerebellum as a Neuronal Machine. New York: Springer, 1967.

    Google Scholar 

  8. Fox P.T., Raichle M.E., Thach W.T.:Functional mapping of the human cerebellum with positron emission tomography. Proc. Natl. Acad. Sci. USA 82: 7462–7466, 1985.

    CAS  PubMed  Google Scholar 

  9. Galaburda A.M.:The anatomy of language: Lessons from comparative anatomy. In D. Caplan, A.R. Lecours, and A. Smith (eds). Biological Perspectives on Language. Cambridge: MIT Press, pp. 290–302, 1984.

    Google Scholar 

  10. Galaburda A.M. andPandya D.N.:Role of architectonics and connections in the study of primate brain evolution. In E. Armstrong and D. Falk (eds): Primate Brain Evolution, Methods and Concepts. New York: Plenum Press, pp. 203–216, 1982.

    Google Scholar 

  11. Heimburger R.F., Whitlock C.C.:Stereotaxic destruction of the human dentate nucleus. Confin. Neurol. 26: 346–358, 1965.

    CAS  PubMed  Google Scholar 

  12. Inhoff A.W., Diener C., Rafal R.:(In Preparation): Cerebellar Control of Motor Programs.

  13. Ito M.:Is the cerebellum really a computer? Trends Neurosci. 2: 122–126, 1979.

    Article  Google Scholar 

  14. Ito M.:The Cerebellum and Neurol Control. New York: Raven Press, 1984.

    Google Scholar 

  15. Ivry R.:(In Press). Ph.D. Thesis, Dept. of Psychology, University of Oregon, dated Dec, 1986.

  16. Kent R.D.:Brain mechanisms of speech and language with special reference to emotional interactions. In R.C. Naremore (ed). Language Science: San Diego: College Hill Press, pp. 281–334, 1984.

    Google Scholar 

  17. Leiner H.C., Leiner A.L., Dow R.S.:Does the cerebellum contribute to mental skills? Behav. Neurosci. 100: 443–454, 1986.

    Article  CAS  PubMed  Google Scholar 

  18. Leiner H.C. Leiner A.L. Dow R.S.:(In Press). Cerebellar contributions to cerebral skills in apes and humans: Motor, mental, and language skills.

  19. Luria A.R.:Higher Cortical Functions in Man (2nd ed). New York: Basic Books, 1980.

    Google Scholar 

  20. Marin O.S.M.:Neurobiology of language: an overview. In S.R. Harnad, H.D. Steklis, an J. Lancaster (eds): Origins and Evolution of Language and Speech. Ann. N.Y. Acad. Sci. 280: 900–912, 1976.

  21. Massion J.:The mammalian red nucleus. Physiol. Rev. 47: 383–436, 1967.

    CAS  PubMed  Google Scholar 

  22. Monakow C. Von:Der rote Kern, die Haube und die Regio subthalamica bei einige Säugetieren und beim Menschen. Arb. Hirnanat. Inst. Zurich, Vol. 3 and Vol. 4, 1909, 1910.

  23. Nathan P.W., Smith M.C.:The rubrospinal and central tegmental tracts in man. Brain 105: 223–269, 1982.

    CAS  PubMed  Google Scholar 

  24. Passingham R.E.:Changes in the size and organization of the brain in lan and his ancestors. Brain Behav. Evol. 11: 73–90, 1975.

    CAS  PubMed  Google Scholar 

  25. Penfiedl W.:Bilateral frontal gyrectomy and postoperative intelligence. Res. Publ. Assoc. Nerv. Ment. Dis. 27: 519–534, 1948.

    Google Scholar 

  26. Pentland A.:Maximal likelihood estimates: the best PEST. Perception and Psychophysics 28: 377–379, 1980.

    CAS  PubMed  Google Scholar 

  27. Posner M.I. Petersen S.:Personal communications, from Washington University School of Medicine, St. Louis, Missori (1986, 1987).

  28. Risse G.L., Rubens A.B. Jordan L.S.:Disturbances of long-term memory in aphasic patients. A comparison of anterior and posterior lesions. Brain 107: 605–617, 1984.

    PubMed  Google Scholar 

  29. Roland P.E.:Metabolic measurements of the working frontal cortex in man. Trends Neurosci. 7: 430–435, 1984.

    Article  Google Scholar 

  30. Sasaki K.:Cerebro-cerebellar intreractions and organization of a fast and stable hand movement: Cerebellar participation in voluntary movement and motor learning IN J.R. Bloedel, J. Dichgans, and W. Precht (eds). Cerebellar Functions. Berlin: Springer, pp. 70–85, 1985.

    Google Scholar 

  31. Siegfried J., Esslen E., Gretener U., Ketz E, Perret E.:Functional anatomy of the dentate nucleus in the light of sterotaxic operations. Confin. Neruol. 32: 1–10, 1970.

    CAS  Google Scholar 

  32. Stern K.:Thalamo-frontal projection in man. J. Anat. 76: 302–397, 1942.

    Google Scholar 

  33. Stuss D.T., Benson D.F.:The Frontal Lobes, New York: Raven Press, 1986.

    Google Scholar 

  34. Taylor M. Creelman C.:PEST: Efficient estimates of probability functions. J. Acoustical Soc. of America 41: 782–787, 1967.

    Google Scholar 

  35. Thompson R.F.:The neurobiology of learing and memory: Science 233: 941–947, 1986.

    CAS  PubMed  Google Scholar 

  36. Tilney F.:The Brain from Ape to Man (Vol. 2). New York: Paul B. Hoeber, 1928.

    Google Scholar 

  37. Tsukahara N.:Classical conditioning mediated by the red nucleus: an approach beginning at the cellular level. In G. Lynch J.L. McGaugh, and N.M. Weinberger (eds): Neurobiology ofpLearning and Memory. New York: Guilford Press, pp. 165–180, 1984.

    Google Scholar 

  38. Van Buren J.M., Borke R.C.:Variations and Connections of the Human Thalamus (Vol. 1). New York: Springer, 1972.

    Google Scholar 

  39. Verhaart W.J.C.:The red nucleus, the cerebellum, and the inferior olive in man. Acta Neurol. Scand. 38: 67–78, 1962.

    CAS  PubMed  Google Scholar 

  40. Voogd J., Bigarè F.:Topographical distribution of olivary and corticonuclear fibres in the cerebellum A review. In J. Courville, C. de Montigny, and Y. Lamarre (eds). The Inferior Olivary Nucleus. New York: Academic Press, pp. 207–234, 1980.

    Google Scholar 

  41. Washburn S.L. Harding R.S.:Evolution of primate behavior. In F.O. Schmitt (ed): The Neurosciences: Second Study Progam. New York: Rockefeller University Press, pp. 39–47, 1970.

    Google Scholar 

  42. Wing A., Kristofferson A.:Response delays and the timing of discreet motor responses. Perception and Psychophysics 14: 5–12, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiner, H.C., Leiner, A.L. & Dow, R.S. Cerebro-cerebellar learning loops in apes and humans. Ital J Neuro Sci 8, 423–436 (1987). https://doi.org/10.1007/BF02334599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02334599

Key-Words

Navigation