Skip to main content
Log in

Rate of normal longitudinal bone growth in the rat

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The rate of normal growth in length from the proximal growth plate of the tibia in the Sprague-Dawley rat was measured between 20 and 100 days of age using the tetracycline method. The growth rate varied only slightly within different age groups. The rate was highest in young animals and decreased considerably with increasing age. Male rats grew faster than female. This study is intended to provide a base for an evaluation of experimental influence on the growth in length of the rat.

Résumé

La vitesse de croissance normale en longueur de la métaphyse proximale du tibia est déterminée chez le rat Sprague-Dawley entre les âges de 20 et 100 jours, en utilisant la méthode à la tétracycline. Le taux de croissance ne varie que légèrement dans les groupes d'âges différents. Il est plus élevé chez les animaux jeunes et décroit considérablement en fonction de l'augmentation de l'âge. Les rats mâles présentent une croissance plus élevée que les femelles. Cette étude a pour but de mettre au point une méthode permettant de déterminer les facteurs expérimentaux, liés à la croissance en longueur du rat.

Zusammenfassung

Die normale Längenwachstums-Geschwindigkeit der proximalen Wachstumsplatte der Tibia wurde bei Sprague-Dawley-Ratten in einem Alter zwischen 20 und 100 Tagen mittels der Tetracyclinmethode gemessen. Die Wachstumsgeschwindigkeit variierte nur wenig innerhalb der einzelnen Altersgruppen. Die Geschwindigkeit war bei jungen Tieren am höchsten und nahm mit zunehmendem Alter beträchtlich ab. Männliche Ratten wuchsen schneller als weibliche. Diese Arbeit dient als Grundlage, um die experimentelle Beeinflussung des Längenwachstums der Ratte abschätzen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson, R. M., Macintyre, M. N.: The effects of acute infection and acute starvation on skeletal development. Brit. J. exp. Path.39, 37–45 (1958).

    PubMed  Google Scholar 

  2. Acheson, R. M.: Effect of starvation, septicaemia and chronic illness on the growth cartilage plate and metaphysis of the immature rat. J. Anat. (Lond.)93, 123–130 (1959).

    Google Scholar 

  3. Acheson, R. M., Macintyre, M. N., Oldham, E.: Techniques in longitudinal studies of the skeletal development of the rat. Brit. J. Nutr.13, 283–292 (1959).

    Article  PubMed  Google Scholar 

  4. Ahlgren, S. A.: Rate of apposition of dentine in upper incisors in normal and hormone-treated rats. Acta orthop. scand., Suppl. 116 (1968).

  5. Ahlgren, S. A., Hansson, L. I.: Effect of hypophyseal growth hormone on endochondral bone growth. Eur. Surg. Res.1, 166–167 (1969).

    Google Scholar 

  6. Amako, T., Honda, K.: An experimental study of the epiphyseal stapling. Kyushu J. med. Sci.8, 131–138 (1957).

    Google Scholar 

  7. Aries, L. J.: Experimental analysis of the growth pattern and rates of appositional and longitudinal growth in the rat femur. Surg. Gynec. Obstet.72, 679–689 (1941).

    Google Scholar 

  8. Becks, H., Evans, H. M.: Atlas of the skeletal development of the rat, p. 103. San Francisco: The American Institute of Dental Medicine 1953.

    Google Scholar 

  9. Bisgard, J. D., Bisgard, M. E.: Longitudinal growth of long bones. Arch. Surg.31, 568–578 (1935).

    Google Scholar 

  10. Brodin, H.: Longitudinal bone growth. The nutrition of the epiphyseal cartilages and the local blood supply. Acta orthop. scand., Suppl. 20 (1955).

  11. Caffey, J.: Changes in the growing skeleton after the administration of bismuth. Amer. J. Dis. Child.53, 56–78 (1937).

    Google Scholar 

  12. Curley, J. J., Pelas, A.: Comparative studies of litters obtained from Long-Evans and Sprague-Dawley rat stocks. Lab. Anim. Care19, 716–719 (1969).

    PubMed  Google Scholar 

  13. Donaldson, H. H.: The rat. Data und reference tables. Memoirs of the Wistar Institute of Anatomy and Biology No 6, p. 469. Philadelphia 1924.

  14. Elo, J. O.: The effect of subperiosteally implanted autogenous whole-thickness skin graft on growing bone. An experimental study. Acta orthop. scand., Suppl. 45 (1960).

  15. Frost, H. M.: Tetracycline bone labelling in anatomy. Amer. J. Phys. Anthropol.29, 183–195 (1968).

    Google Scholar 

  16. Geschwind, I. I., Li, C. H.: The tibia test for growth hormone. In: The hypophyseal growth hormone, nature and actions, p. 28–58, eds. Smith, R. W., Gaebler, O. H., and Long, C. N. H. New York-Toronto-London: The McGraw-Hill Book Company, Inc., 1955.

    Google Scholar 

  17. Gill, G. G., Abbott, L. C.: Practical method of predicting the growth of the femur and tibia in the child. Arch. Surg.45, 286–315 (1942).

    Google Scholar 

  18. Goland, P. P., Grand, N. G.: Chloro-s-triazines as markers and fixatives for the study of growth in teeth and bones. Amer. J. Phys. Anthropol.29, 201–217 (1968).

    Google Scholar 

  19. Grøn, P., Johannessen, L. B.: Fluorescence of tetracycline antibiotics in dentin. Acta odont. scand.19, 79–85 (1961).

    PubMed  Google Scholar 

  20. Hansson, L. I.: Determination of endochondral bone growth in rabbit by means of oxytetracycline. Acta Univ. Lund. sectio II, No 1 (1964).

  21. Hansson, L. I.: Daily growth in length of diaphysis measured by oxytetracycline in rabbit normally and after medullary plugging. Acta orthop. scand., Suppl. 101 (1967).

  22. Hedström, Ö.: Growth stimulation of long bones after fracture or similar trauma. A clinical and experimental study. Acta orthop. scand., Suppl. 122 (1969).

  23. Heikel, H. V. A.: On ossification and growth of certain bones of the rabbit; with a comparison of the skeletal age in the rabbit and in man. Acta orthop. scand.29, 171–184 (1959–1960).

    Google Scholar 

  24. Hendryson, I. E.: An evaluation of the estimated percentage of growth from the distal epiphyseal line. J. Bone Jt Surg.27, 208–210 (1945).

    Google Scholar 

  25. Hoyte, D. A. N.: Alizarin red in the study of the apposition and resorption of bone. Amer. J. Phys. Anthropol.29, 157–177 (1968).

    Google Scholar 

  26. Hughes, P. C. R., Tanner, J. M.: A longitudinal study of the growth of the black-hooded rat: methods of measurements and rates of growth for skull, limbs, pelvis, nose-rump and tail lengths. J. Anat. (Lond.)106, 349–370 (1970).

    Google Scholar 

  27. Hulth, A., Olerud, S.: Tetracycline labelling of growing bone. Acta Soc. Med. upsalien.67, 219–231 (1962).

    Google Scholar 

  28. Ingalls, T. H.: Epiphyseal growth: normal sequence of events at the epiphyseal plate. Endocrinology29, 710–719 (1941).

    Google Scholar 

  29. Kember, N. F.: Cell division in endochondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J. Bone Jt Surg. B42, 824–839 (1960).

    Google Scholar 

  30. Kennedy, G. C.: Interactions between feeding behaviour and hormones during growth. Ann. N. Y. Acad. Sci.157, 1049–1061 (1969).

    PubMed  Google Scholar 

  31. King, H. D.: The growth and variability in the body weight of the albino rat. Anat. Rec.9, 751–776 (1915).

    Article  Google Scholar 

  32. Lacroix, P.: The organization of bones, p. 235. London: Churchill 1951.

    Google Scholar 

  33. Langenskiöld, A.: Inhibition and stimulation of growth. Acta orthop. scand.26, 308–316 (1957).

    PubMed  Google Scholar 

  34. Leblond, C. P., Wilkinson, G. W., Belanger, L. F., Robichon, J.: Radioautographic visualization of bone formation in the rat. Amer. J. Anat.86, 289–341 (1950).

    Article  PubMed  Google Scholar 

  35. Lee, M. M. C.: Natural markers in bone growth. Amer. J. Phys. Anthropol.29, 295–310 (1968).

    Google Scholar 

  36. Lee, M. M. C., Chu, P. G., Chan, H. C.: Magnitude and pattern of compensatory growth in rats after cold exposure. J. Embryol. exp. Morph.21, 407–416 (1969).

    PubMed  Google Scholar 

  37. Lee, W. R.: The use of the tetracyclines in the quantitative microscopic study of bone formation. M. D. Thesis, University of Manchester (1963).

  38. Lee, W. R.: Appositional bone formation in canine bone: a quantitative microscopic study using tetracycline markers. J. Anat. (Lond.)98, 665–677 (1964).

    Google Scholar 

  39. Monteiro, L. S., Falconer, D. S.: Compensatory growth and sexual maturity in mice. Anim. Prod.8, 179–192 (1966).

    Google Scholar 

  40. Owen, L. N.: Fluorescence of tetracyclines in bone tumours, normal bone and teeth. Nature (Lond.)190, 500–502 (1961).

    Google Scholar 

  41. Pahl, P. J.: Growth curves for body weight of the laboratory rat. Aust. J. biol. Sci.22, 1077–1080 (1969).

    PubMed  Google Scholar 

  42. Payton, C. G.: The growth in length of the long bones in the madder-fed pig. J. Anat. (Lond.)66, 414–425 (1931–1932).

    Google Scholar 

  43. Pease, C. N.: Local stimulation of growth of long bones. A preliminary report. J. Bone Jt Surg.34 A, 1–23 (1952).

    Google Scholar 

  44. Persson, B. M.: Growth in length of bones in change of oxygen and carbon dioxide tensions. Acta orthop. scand., Suppl.117 (1968).

  45. Prescott, G. H., Mitchell, D. F., Fahmy, H.: Procion dyes as matrix markers in growing bone and teeth. Amer. J. Phys. Anthropol.29, 219–224 (1968).

    Google Scholar 

  46. Rang, M.: The growth plate and its disorders. Edinburgh-London: Livingstone 1969.

    Google Scholar 

  47. Ray, R. D., Simpson, M. E., Li, C. H., Asling, C. W., Evans, H. M.: Effects of the pituitary growth hormone and of thyroxin on growth and differentiation of the skeleton of the rat thyroidectomized at birth. Amer. J. Anat.86, 479–516 (1950).

    Article  PubMed  Google Scholar 

  48. Ryöppi, S.: Transplantation of epiphyseal cartilage and cranial suture. Experimental studies on the preservation of the growth capacity in growing bone grafts. Acta orthop. scand., Suppl.82, (1965).

  49. Sarnat, B. G.: Growth of bones as revealed by implant markers in animals. Amer. J. Phys. Anthrop.29, 255–285 (1968).

    PubMed  Google Scholar 

  50. Schemmel, R., Mickelsen, O., Mostosky, U.: Skeletal size in obese and normal-weight littermate rats. Clin. orthop. related res.65, 89–96 (1969a).

    Google Scholar 

  51. Schemmel, R., Mickelsen, O., Tolgay, Z.: Dietary obesity in rats: influence of diet, weight, age and sex on body composition. Amer. J. Physiol.216, 373–379 (1969).

    PubMed  Google Scholar 

  52. Schneider, B. J.: Lead acetate as a vital marker for the analysis of bone growth. Amer. J. Phys. Anthrop.29, 197–200 (1968).

    PubMed  Google Scholar 

  53. Sissons, H. A.: Experimental determination of rate of longitudinal bone growth. J. Anat. (Lond.)87, 228–236 (1953).

    Google Scholar 

  54. Sissons, H. A., Lee, W. R.: Tetracycline studies of bone turnover. In: Bone and tooth, ed. Blackwood, H. J. J., p. 65–69. Oxford-London-New York-Paris: Pergamon Press 1964.

    Google Scholar 

  55. Smeenk, D., van der Sluys Veer, J., Birkenhäger, J. C., van der Heul, R. O.: Rate of calcification of the proximal tibial epiphyseal cartilage of rats studied with the aid of tetracycline labelling. In: Proc. Second European Symposium on Calcified Tissues, eds. Richelle, L. J., and Dallemagne, M. J., p. 199–205. Liège: Collection des Colloques de l'Université de Liège 1965.

    Google Scholar 

  56. Sundén, G.: Some aspects of longitudinal bone growth. An experimental study of the rabbit tibia. Acta orthop. scand., Suppl. 103 (1967).

  57. Swanson, H. E., van der Werff ten Bosch, J. J.: Sex differences in growth of rats, and their modification by a single injection of testosterone proprionate shortly after birth. J. Endocr.26, 197–207 (1963).

    PubMed  Google Scholar 

  58. Taillard, W., Morscher, E.: Die Beinlängenunterschiede, S. 151. Basel-New York: Karger 1965.

    Google Scholar 

  59. Tapp, E.: Tetracycline labelling methods of measuring the growth of bones in the rat. J. Bone Jt Surg. B48, 517–525 (1966).

    Google Scholar 

  60. Troupp, H.: Nervous and vascular influence on longitudinal growth of bone. An experimental study on rabbits. Acta orthop. scand., Suppl. 51 (1961).

  61. Walker, D. G., Simpson, M. E., Asling, C. W., Evans, H. M.: Growth and differentiation in the rat following hypophysectomy at 6 days of age. Anat. Rec.106, 539–554 (1950).

    Article  Google Scholar 

  62. Weber, J. C., van Huss, W. D., Mostosky, W. V.: Determination of bone lengthin vivo. Res. Quart.39, 223–224 (1968).

    Google Scholar 

  63. Yonaga, T.: On the growth of hairs, teeth and bones and the endocrine glands. Ochanomizu Med. J.7, 1947–1978 (1959).

    Google Scholar 

  64. Zucker, T. F., Zucker, L. M.: Bone growth in the rat as related to age and body weight. Amer. J. Physiol.146, 585–592 (1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, L.I., Menander-Sellman, K., Stenström, A. et al. Rate of normal longitudinal bone growth in the rat. Calc. Tis Res. 10, 238–251 (1972). https://doi.org/10.1007/BF02012553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02012553

Key words

Navigation