Skip to main content
Log in

Acquired alterations in vitamin D metabolism in the acidotic state

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Classic (type I) renal tubular acidosis in children is attended by growth retardation and rickets, abnormalities that can be corrected by alkali therapy alone. We have employed the NH4Cl-treated rachitic chick as a model to investigate vitamin D metabolism in the acidotic state. NH4Cl ingestion for 96 h was associated with a rise in serum calcium, a significant decrease in blood pH (7.42+0.08 vs 7.30±0.08,P<0.005), decreased [3H]1,25(OH)2D3 following [3H]25OHD D3 injections, and enhanced metabolic clearance of administered [3H]1,25(OH)2D3. The data collectively suggest that metabolic acidosis in the chick alters the production and degradation of 1,25(OH)2D3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nash, M. A., Torrado, I., Greifer, A., et al.: Renal tubular acidosis in infants and children, J. Pediatr.80:738–748, 1972

    PubMed  CAS  Google Scholar 

  2. Stickler, G. B., Bergen, B. J.: A review: short stature in renal disease, Pediatr. Res.7:978–982, 1973

    PubMed  CAS  Google Scholar 

  3. McSherry, E., Morris, R. C., Jr.: Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis, J. Clin. Invest.61:509–527, 1978

    PubMed  CAS  Google Scholar 

  4. Seedat, Y. K.: Renal tubular acidosis, South Afr. Med. J.41:1007–1012, 1967

    CAS  Google Scholar 

  5. Richards, P., Chamberlain, M. J., Wrong, O. M.: Treatment of osteomalacia of renal tubular acidosis by sodium bicarbonate alone, Lancet2:994–997, 1972

    Article  PubMed  CAS  Google Scholar 

  6. Mautulen, C., Montoreano, R., Labarrere, C.: Early skeletal effect of alkali therapy upon the osteomalacia of renal tubular acidosis, J. Clin. Endocrinol. Metab.42:875–881, 1976

    Google Scholar 

  7. West, C. D., Smith, W. C.: An attempt to elucidate the cause of growth retardation in renal disease, Am. J. Dis. Child.91:460–476, 1956

    CAS  Google Scholar 

  8. Cooke, R. E., Boyden, D. G., Haller, E.: The relationship of acidosis and growth retardation in renal disease, J. Pediatr.57:326–337, 1960

    Article  PubMed  CAS  Google Scholar 

  9. Relman, A. S., Lennon, E. J., Lemann, J. Jr.: Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects, J. Clin. Invest.40:1621–1630, 1961

    Article  PubMed  CAS  Google Scholar 

  10. Bergstrom, W. H., de Leon, van Gemund J. J.: Growth aberrations in renal disease, Pediatr. Clin. North Am.11:563–575, 1964

    PubMed  CAS  Google Scholar 

  11. Lee, S. W., Russell, J. E., Avioli, L. V.: 25OHD3 to 1,25(OH)2D3: conversion impaired by systemic acidosis, Science195:994–996, 1977

    PubMed  CAS  Google Scholar 

  12. Sauveur, B. M., Garabedian, C., Fellot, P., et al.: The effect of induced metabolic acidosis on vitamin D3 metabolism in rachitic chicks, Calcif. Tissue Int.23:121–124, 1977

    Article  CAS  Google Scholar 

  13. Esvelt, R. P., Schnoes, H. K., DeLuca, H. F.: Isolation and characterization of 1α-hydroxy-23-carboxytetranorvitamin D: a major metabolite of 1,25-dihydroxyvitamin D3, Biochemistry18:3977–3983, 1979

    Article  PubMed  CAS  Google Scholar 

  14. Holick, M. F., DeLuca, H. F.: A new chromatographic system for vitamin D3 and its metabolites; resolution of a new vitamin D3 metabolite, J. Lipid Res.12:460–465, 1971

    PubMed  CAS  Google Scholar 

  15. Pybus, J., Feldman, F. J., Bowers, G. N., Jr.: Measurement of total calcium in serum by atomic absorption spectrophotometry, with use of strontium internal reference, Clin. Chem.16:998–1007, 1970

    PubMed  CAS  Google Scholar 

  16. Kraml, M.: A semi-automated determination of phosphorus, Clin. Chem. Acta13:442–448, 1966

    Article  CAS  Google Scholar 

  17. DeLuca, H. F., Schnoes, H. K.: Metabolism and mechanism of action of vitamin D, Annu. Rev. Biochem.45:631–666, 1976

    Article  PubMed  CAS  Google Scholar 

  18. Rasmussen, H., Wong, M., Bikle, D., et al.: Hormonal control of the renal conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol, J. Clin. Invest.51:2502–2504, 1972

    PubMed  CAS  Google Scholar 

  19. Luchert, B. P., Stanbury, S. W., Mawer, E. B.: Vitamin D and intestinal transport of calcium: effects of prednisolone, Endocrinology93:718–722, 1973

    Google Scholar 

  20. Henry, H. L., Midgett, R. J., Norman, A. W.: Regulation of 25-hydroxyvitamin D-1-hydroxylasein vivo, J. Biol. Chem.249:7584–7592, 1974

    PubMed  CAS  Google Scholar 

  21. Spanos, E., Pike, J. W., Haussler, M. R., et al.: Circulating 1,25-dihydroxyvitamin D in the chicken: enhancement by injection of prolactin during egg laying, Life Sci.19:1751–1759, 1976

    Article  PubMed  CAS  Google Scholar 

  22. Kenny, A. D.: Vitamin D metabolism: physiological regulation in egg laying Japanese quail, Am. J. Physiol.230:1609–1615, 1976

    PubMed  CAS  Google Scholar 

  23. Lorenc, R., Tanaka, Y., DeLuca, H. F., et al.: Lack of effect of calcitonin on the regulation of vitamin D metabolism in the rat, Endocrinology100:468–472, 1977

    Article  PubMed  CAS  Google Scholar 

  24. Bsksi, S. N., Kenny, A. D.: Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects, Am. J. Physiol.234:E622-E628, 1978

    Google Scholar 

  25. Colston, K. W., Evans, I. M. A., Ganante, L., et al.: Regulation of vitamin D metabolism: factors regulating the role of formation of 1,25-dihydroxycholecalciferol by kidney homogenates, Biochem. J.134:817–820, 1973

    PubMed  CAS  Google Scholar 

  26. Frazer, D. R., Kodicek, E.: Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone, Nature [New Biol.]241:163–166, 1973

    Google Scholar 

  27. Nguyen, V. V., Jowsey, J.: Acute effects of hormones, vitamin D3 and acidosis duringin vivo perfusion of adult dog forelimbs, J. Bone Joint Surg.52A:1041–1049, 1970

    Google Scholar 

  28. Ohnuma, N., Banaai, K., Yamaguchi, H., et al.: Isolation of a new metabolite of vitamin D produced in vivo, 1α25-dihydroxyvitamin D3-26-23-lactone, Biochem. Biophys.204:387–391, 1980

    Article  CAS  Google Scholar 

  29. Weber, H. P., Gray, R. W., Dominguez, J. H., et al. The lack of effect of chronic metabolic acidosis on 25-hydroxyvitamin D metabolism and serum parathyroid in humans, J. Clin. Endocrinol. Metab.43:1047–1055, 1976

    PubMed  CAS  Google Scholar 

  30. Adams, N. D., Gray, R. W., Lemann, J., Jr.: The calciuria of increased fixed acid production in humans: evidence against a role for parathyroid hormone and 1,25(OH)2 vitamin D, Calcif. Tissue Int.28:233–238, 1979

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, D.T., Lee, S.W., Jo, O.D. et al. Acquired alterations in vitamin D metabolism in the acidotic state. Calcif Tissue Int 34, 165–168 (1982). https://doi.org/10.1007/BF02411228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411228

Key words

Navigation