Skip to main content
Log in

Sodium fluoride does not increase human bone cell proliferation or protein synthesis in vitro

  • Letters to the Editor
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kopp JB, Robey PG (1990) Calcif Tiss Int 47:221–229

    Google Scholar 

  2. Farley et al. (1983) Science 222:330–332

    Google Scholar 

  3. Wergedal et al. (1988) Clin Ortho Rel Res 233:274–282

    Google Scholar 

  4. Hall (1987) Bone 8:111–116

    Google Scholar 

  5. Bellows et al. (1990) J Bone Min Res 5:S101-S105

    Google Scholar 

  6. Reed et al. (1990) J Bone Min Res 5:S153

  7. Khokhar, Dandora (1990) Metabolism 39:1118–1121

    Google Scholar 

  8. Ittner et al. (1989) J Bone Min Res 4(Suppl 1):870

    Google Scholar 

  9. Farley JR, Tarbaux N, Hall S, Baylink DJ (1988) Metabolism 37:988–995

    Google Scholar 

  10. Marie PJ, de Vernejoul MC, Lomri A (1990) J Bone Min Res 5:S140

References

  1. Wergedal JE, Lau KHW, Baylink DJ (1988) Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clin Oerho Rel Res 233:274–282

    Google Scholar 

  2. Ittner J, Muhleck OS, Kunel EM, Maier P, Puhl W, Pfeiffer EF (1989) Effects of fluoride on osteoporosis-bone derived human osteoblast-like cells. J Bone Min Res 4 (Suppl 1):870

    Google Scholar 

  3. Khokher MA, Dandona P (1990) Fluoride stimulates 3H-thymidine incorporation and alkaline phosphatase production by human osteoblasts. Metabolism 39:1118–1121

    Google Scholar 

  4. Kopp JB, Gehron Robey P (1990) Sodium fluoride does not increase human bone cell proliferation of protein synthesis in vitro. Calcif Tiss Int 47:221–229

    Google Scholar 

  5. Chavassieux P, Valentin-Opran A, Chenu C, Boivin G, Delmas PD, Chapuy MC, Hartmann D, Saez S, Meunier PJ (1987) Long-term effects of sodium fluoride on human osteoblast cultures. In: DV Cohn, TJ Martin, PJ Meunier (eds): Calcium Regulation and Bone Metabolism, vol. 9. Excerpta Medica, Amsterdam, p. 856

    Google Scholar 

  6. Marie PJ, de Vernejoul MC, Lomri A (1990) Fluoride-induced stimulation of bone formation in osteoporosis is associated increased DNA synthesis by osteoblastic cells in vitro. J Bone Min Res 5 (Suppl 1):265

    Google Scholar 

  7. Stein GS, Lina JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4:3111–3123

    Google Scholar 

  8. Gehron Robey P, Termine JD (1985) Human bone cells in vitro. Calcif Tiss Int 37:453–460

    Google Scholar 

  9. Hall BK (1987) Sodium fluoride as an initiator of osteogenesis of embryonic mesenchyme in vitro. Bone 8:111–116

    Google Scholar 

  10. Bellows J, Heersche JNM, Aubin JE (1990) The effects of fluoride on osteoblast progenitors in vitro. J Bone Min Res 5 (Suppl 1):S101-S105

    Google Scholar 

  11. Farley JR, Tarbaux NM, Vermeiden JPW, Baylink DJ (1988) In vitro evidence that local and systemic skeletal effectors can regulate 3H-thymidine incorporation in chick calvarial cell cultures and modulate the stimulatory action(s) of embryonic chick bone extract. Calif Tissue Int 42:23–33

    Google Scholar 

  12. Kopp JB, Gehron Robey P (1990) Sodium fluoride lacks mitogenic activity for fetal human bone cells in vitro. J Bone Min Res 5 (Suppl 1):S137-S141

    Google Scholar 

References

  1. Mazess RB (1990) Fracture risk: a role for compact bone. Calcif Tissue Int 47:191–193

    Google Scholar 

  2. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Google Scholar 

  3. Bergot C, Laval-Jeantet A-M, Preteux F, Meunier A (1988) Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int 43:143–149

    Google Scholar 

  4. Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone 10:425–432

    Google Scholar 

  5. Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanism and biomechanical consequences. a) Differences between rapid and slow bone loss. b) Localized bone gain. Calcif Tissue Int 36:S123-S128

    Google Scholar 

References

  1. Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker Roe D, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Google Scholar 

  2. Bonucci E, Ballanti P, Della Rocca C, Milani S, LoCascio V, Imbimbo B (1990) Technical variability of bone histomorphometric measurements. Bone Miner 11:177–186

    Google Scholar 

  3. Podenphant J (1990) Methodological problems in bone histomorphometry and its application in postmenopausal osteoporosis. Danish Med Bull 37:924–433

    Google Scholar 

  4. Wright CDP, Crawley EO, Evans WD, Garrahan NJ, Mellish RWE, Croucher PI, Compston JE (1990) The relationship between spinal trabecular bone mineral content and iliac crest trabecular bone volume. Calcif Tissue Int 46:162–165

    Google Scholar 

  5. Britton JM, Davie MWJ (1990) Mechanical properties of bone from iliac crest and relationship to L5 vertebral bone. Bone 11:21–28

    Google Scholar 

  6. Fazzalari NL, Moore RJ, Manthey BA, Vernon-Roberts B (1989) Comparative study of iliac crest and proximal femur histomorphometry in normal patients. J Clin Pathol 42:745–748

    Google Scholar 

  7. Eventov I, Frisch B, Cohen Z, Hammel I (1991) Osteopenia, hematopoiesis, and bone remodeling in iliac crest and femoral biopsies: a prospective study of 102 cases of femoral neck fractures. Bone 12:1–6

    Google Scholar 

  8. Parfitt AM (1987) Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 82:68–72

    Google Scholar 

  9. Heaney RP (1989) Osteoporotic fracture space: an hypothesis. Bone Miner 6:1–13

    Google Scholar 

  10. Granhed H, Jonson R, Hansson T (1989) Mineral content and strength of lumbar vertebrae. Acta Orthop Scand 60:105–109

    Google Scholar 

  11. Osvalder A-L, Neumann P, Lovsund P, Nordwall A (1990) Ultimate strength of the lumbar spine in flexion: an in vitro study. J Biomechanics 23(5):453–460

    Google Scholar 

  12. Eriksson SA, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    Google Scholar 

  13. Hansson TH, Roos BO, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55.

    Google Scholar 

  14. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Rel Res 215:260–271

    Google Scholar 

  15. Mazess RB (1982) On aging bone loss. Clin Orthop Rel Res 162:239–252

    Google Scholar 

  16. Jensen KS, Mosekilde Li, Mosekilde Le (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:417–423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylink, D.J., Farley, J.R., William Lau, K.H. et al. Sodium fluoride does not increase human bone cell proliferation or protein synthesis in vitro . Calcif Tissue Int 50, 96–97 (1992). https://doi.org/10.1007/BF00297305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297305

Keywords

Navigation