Skip to main content
Log in

Aminoglycoside blockade of Ca2+-activated K+ channel from rat brain synaptosomal membranes incorporated into planar bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ca2+-activated K+ channels from rat brain synaptosomal membranes were incorporated into planar lipid bilayers, and the effects of aminoglycoside antibiotics on the single channel conductance (258±13 pS at 100mm K+) were investigated. Aminoglycosides reduced the single channel conductance from the ‘cis’ (cytoplasmic) side in a dose- and voltage-dependent manner. Voltage dependence of the blockade indicated an interaction between positively charged amino residues of aminoglycoside antibiotics and a binding site located within the electric field of the ion-conducting pathway. The order of blocking potency was consistent with that of the number of amino residues of aminoglycosides (neomycin (6)>dibekacin (5)>ribostamycin (4)=kanamycin (4)), while the electrical distance (zδ=0.46–0.49) of the binding site kept almost constant for each drug. Thesezδs were almost the same with those (0.46–0.51) of alkyldiamine blockers with two amino residues (total net charge of +2) and approximately twice of those (0.25–0.26) of alkylmonoamine blockers (total net charge of +1). Assuming that amino residues of aminoglycosides and alkylamines shared the same binding site located at 25% voltage drop from the cytoplasmic surface of the channel, the site would have to be at least large enough to accommodate one diamino sugar residue of the aminoglycoside in order to simultaneously interact with two positively charged amino groups. Dose- and voltage-dependent blockade of the channel by gallamine, an extremely bulky trivalent organic cation, supported the picture that the channel has a wide mouth on the cytoplasmic side and its ‘pore’ region, where voltage drop occurs, may also be quite wide and nonselective, suddenly tapering to a constriction where most charged cations block the channel by ‘occluding’ the K+-conducting pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons.J. Gen. Physiol. 58:413–437

    PubMed  Google Scholar 

  • Bartschat, D.K., Blaustein, M.P. 1985a. Potassium channels in isolated presynaptic nerve terminals from brain.J. Physiol. (London) 361:419–440

    Google Scholar 

  • Bartschat, D.K., Blaustein, M.P. 1985b. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.J. Physiol. (London) 361:441–457

    Google Scholar 

  • Cecchi, X., Wolff, D., Alvarez, O., Latorre, R. 1987. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle.Biophys. J. 52:707–716

    PubMed  Google Scholar 

  • Coronado, R., Miller, C. 1982. Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers.J. Gen. Physiol. 79:529–547

    PubMed  Google Scholar 

  • Coronado, R., Rosenberg, R.L., Miller, C. 1980. Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum.J. Gen. Physiol. 76:425–446

    PubMed  Google Scholar 

  • Eisenman, G., Latorre, R., Miller, C. 1986. Multi-ion conduction and selectivity in the high-conductance Ca2+-activated K+ channel from skeletal muscle.Biophys. J. 50:1025–1034

    PubMed  Google Scholar 

  • Farley, J., Rudy, B. 1988. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.Biophys. J. 53:919–934

    PubMed  Google Scholar 

  • French, R.J., Shoukimas, J.J. 1981. Blockage of squid axon potassium conductance by internal tetra-n-alkylammonium ions of various sizes.Biophys. J. 34:271–291

    PubMed  Google Scholar 

  • Golowasch, J., Kirkwood, A., Miller, C. 1986. Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle.J. Exp. Biol. 124:5–13

    PubMed  Google Scholar 

  • Gray, M.A., Tomlins, B., Montgomery, R.A.P., Williams, A.J., 1988. Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block.Biophys. J. 54:233–239

    PubMed  Google Scholar 

  • Gustin, M., Hennessey, T.M. 1988. Neomycin inhibits the calcium current of Paramecium.Biochim. Biophys. Acta 940:99–104

    PubMed  Google Scholar 

  • Hudspeth, A.J., Kroese, A.B.A. 1983. Voltage-dependent interaction of dihydrostreptomycin with the transduction channels in bullfrog sensory hair cells.J. Physiol. (London) 345:66P

    Google Scholar 

  • Jones, D.H., Matus, A.I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation.Biochim. Biophys. Acta 356:276–287

    PubMed  Google Scholar 

  • Jordan, P.C. 1984a. Effect of pore structure on energy barriers and applied voltage profiles: I. Symmetrical channels.Biophys. J. 45:1091–1100

    PubMed  Google Scholar 

  • Jordan, P.C. 1984b. Effect of pore structure on energy barriers and applied voltage profiles: II. Unsymmetrical channels.Biophys. J. 45:1101–1107

    PubMed  Google Scholar 

  • Jordan, P.C. 1986. Ion channel electrostatics and the shapes of channel proteins.In: Ion Channel Reconstitution. C. Miller, editor. pp. 37–55. Plenum, New York

    Google Scholar 

  • Kroese, A.B.A., Das, A., Hudspeth, A.J. 1989. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics.Hear. Res. 37:203–218

    PubMed  Google Scholar 

  • Krueger, B.K., French, R.J., Blaustein, M.B., Worley, J.F. 1982. Incorporation of Ca2+-activated K+-channels from rat brain into planar lipid bilayers.Biophys. J. 37:170a

    Google Scholar 

  • Krueger, B.K., Worley, J.F., French, R.J. 1983. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes.Nature (London) 303:172–175

    Article  Google Scholar 

  • Latorre, R. 1986. The large calcium-activated potassium channel.In: Ion Channel Reconstitution. C. Miller, editor. pp. 431–467. Plenum, New York

    Google Scholar 

  • Latorre, R. 1980. Varieties of calcium-activated potassium channels.Annu. Rev. Physiol. 51:385–399

    Google Scholar 

  • Miller, C. 1982. Bis-quarternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel.J. Gen. Physiol. 79:861–891

    Google Scholar 

  • Moczydlowski, E., Alvarez, O., Vergara, C., Latorre, R. 1985. Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers.J. Membrane Biol. 83:273–282

    Google Scholar 

  • Moczydlowski, E., Latorre, R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar bilayers.J. Gen. Physiol. 82:511–542

    Article  PubMed  Google Scholar 

  • Nelson, M.T., French, R.J., Krueger, B.K. 1983. Voltage-dependent calcium channels from rat brain incorporated into planar lipid bilayers.Nature (London) 308:77–80

    Google Scholar 

  • Nelson, M.T., Roudna, M., Bamberg, E. 1983. Single K+-channel current measurements from brain syaptosomes in lipid bilayers.Am. J. Physiol. 245:C151-C156

    PubMed  Google Scholar 

  • Neyton, J., Miller, C. 1988a. Potassium blocks barium permeation through a calcium-activated potassium channel.J. Gen. Physiol. 92:549–567

    PubMed  Google Scholar 

  • Neyton, J., Miller, C. 1988b. Descrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel.J. Gen. Physiol. 92:569–586

    PubMed  Google Scholar 

  • Nomura, K., Naruse, K., Sokabe, M. 1989. Aminoglycoside blockade of Ca-activated K channel from rat brain synaptosomal membrane.Proc. Int. Union Physiol. Sci. 17:259

    Google Scholar 

  • Oberhauser, A., Alvarez, O., Latorre, R. 1988. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.J. Gen. Physiol. 92:67–86

    PubMed  Google Scholar 

  • Ohmori, H. 1985. Mechano-transduction currents in isolated vestibular hair cells of the chick.J. Physiol. (London) 359:189–217

    Google Scholar 

  • Oosawa, Y., Sokabe, M. 1986. Voltage-dependent aminoglycoside blockade of the sarcoplasmic reticulum K+ channel.Am. J. Physiol. 250:C361-C364

    PubMed  Google Scholar 

  • Reinhart P.H., Chung, S., Levitan, B. 1989. A family of calcium-dependent potassium channels from rat brain.Neuron 2:1031–1041

    PubMed  Google Scholar 

  • Rudy, B. 1988. Diversity and ubiquity of K channels.Neuroscience 25:729–749

    PubMed  Google Scholar 

  • Sokabe, M. 1983. Neomycin blockade of K+ channels from sarcoplasmic reticulum membranes incorporated in planar bilayers.Proc. Jpn. Acad. 59B:33–37

    Google Scholar 

  • Sokabe, M. 1984. Aminoglycoside blockade of cation channels from polyphosphoinositides and sarcoplasmic reticulum in planar bilayer membranes.In: Transmembrane Signaling and Sensation. F. Oosawa, H. Hayashi, and T. Yoshioka, editors. pp. 119–134. Japan Science Society Press/VNU Science Press BV, Utrecht

    Google Scholar 

  • Sokabe, M., Hayase, J., Miyamoto, K. 1982. Neomycin-effect on lysotriphosphoinositide channel as a model for an acute ototoxicity.Proc. Jpn. Acad. 58B:177–180

    Google Scholar 

  • Squire, L.G., Petersen, O.H. 1987. Modulation of Ca2+-and voltage-activated K+ channels by internal Mg2+ in salivary acinar cells.Biochim. Biophys. Acta 899:171–175

    PubMed  Google Scholar 

  • Suarez-Kurtz, G., Reuben, J.P. 1987. Effects of neomycin on calcium channel currents in clonal GH3 pituitary cells.Pfuegers Arch. 410:517–523

    Google Scholar 

  • Swenson, R.P. 1981. Inactivation of potassium current in squid axon by a variety of quarternary ammonium ions.J. Gen. Physiol. 77:255–271

    PubMed  Google Scholar 

  • Tachibana, M., Komiya, S., Yamada, C., Sokabe, M. 1984. Correlation of ototoxic effect of polyaminocompounds in vivo with effect on triphosphoinositide metabolism and lysotriphosphoinositide channel in vitro.Proc. Jpn. Acad. 60B:318–321

    Google Scholar 

  • Tanifuji, M., Sokabe, M., Kasai, M. 1987. An anion channel of sarcoplasmic reticulum incorporated into planar lipid bilayers: Single-channel behavior and conductance properties.J. Membrane Biol. 99:103–111

    Google Scholar 

  • Vergara, C., Moczydlowski, E., Latorre, R. 1984. Conduction, blockade and gating in a Ca2+-activated K+-channel incorporated into planar lipid bilayers.Biophys. J. 45:73–76

    Google Scholar 

  • Villarroel, A., Alvarez, O., Oberhauser, A., Latorre, R. 1988. Probing a Ca2+-activated K channel with quartanary ammonium ions.Pfluegers Arch. 413:118–126

    Google Scholar 

  • Wagner, J.A., Snowman, A.M., Olivera, B.M., Snyder, S.H. 1987. Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity.N. Engl. J. Med. 317:1669

    Google Scholar 

  • Wong, B.S., Adler, M. 1986. Tetraethylammonium blockade of calcium-activated potassium channels in clonal anterior pituitary cells.Pfluegers Arch. 407:279–284

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687–708

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, K., Naruse, K., Watanabe, K. et al. Aminoglycoside blockade of Ca2+-activated K+ channel from rat brain synaptosomal membranes incorporated into planar bilayers. J. Membrain Biol. 115, 241–251 (1990). https://doi.org/10.1007/BF01868639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868639

Key Words

Navigation