Skip to main content
Log in

The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Proximal straight tubules (PST) were dissected from rabbit kidneys, held by crimping pipettes in a chamber and bathed in a buffered isosmotic (295 mOsm/kg) solution containing 200 mm mannitol (MBS). Changes in tubule diameter were monitored on line with an inverted microscope, TV camera and image processor. The PST were then challenged for 20 sec with MBS made 35 mOsm/kg hyperosmotic by addition of either NaCl, KCl, mannitol (M), glycerol (G), ethylene glycol (E), glycine (g), urea (U), acetamide (A) or formamide (F). With NaCl, KCl, M, G, E, g, U, and A, tubules shrunk osmometrically within 0.5 sec and remained shrunk for as long as 20 sec without recovering their original volume (sometimes A showed some recovery). PST barely shrunk with F and quickly recovered their original volume. The permeability coefficients were 0 μm/sec (NaCl, M, g, E and U), 1 μm/sec (A), 84 μm/sec (F) and 0.02 μm/sec (G). The reflection coefficients σ = 1.0 (NaCl, KCl, M, G, E, g and U), 0.95 (A) and 0.62 (F). Similar σ values were obtained by substituting 200 mOsm/kg M in MBS by either NaCl, KCl, G, E, g, U, a or F. The olive oil/water partition coefficients are 5 (M), 15 (U), 85 (A) and 75 (F) (all x10−5). Thus, part of F permeates the cell membrane through the lipid bilayer. The probing molecules van der Waals diameters are 7.4×8.2×12.0 (M), 3.6×5.2×5.4 (U), 3.8×5.2 ×5.4 (A) and (3.4×4.5×5.4 (F) Å. We conclude that only F clearly permeates the water channel (WCH). Water molecules must single file within the WCH. After subtraction of the bilayer permeability of the probes, we estimate for the WCH selectivity filter cross-section a diameter of 4.2–4.7 Å (if it is circular) and 3.6×4.2 Å (if it is rectangular). But if the oxygens facing the WCH lumen H bond with the molecules crossing the WCH, the WCH selectivity filter would be 3.3–3.8 Å (circular) and 3.6×4.0 Å (rectangular).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agre, P., Preston, G.M., Smith, B.L., Jung, J.S., Raina, S., Moon, C., Guggino, W.B., Nielsen, S. 1993. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265:F463-F476

    Google Scholar 

  • Andersen, O.S., Procopio, J. 1980. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions. Acta Physiol. Scand. Suppl. 481:27–35

    Google Scholar 

  • Carpi-Medina, P., González, E., Whittembury, G. 1983. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244:F554-F563

    Google Scholar 

  • Carpi-Medina, P., González, E., Lindemann, B., Whittembury, G. 1984. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality. Pfluegers Arch. 400:343–348

    Google Scholar 

  • Carpi-Medina, P., Leon, V., Espidel, J., Whittembury, G. 1988. Diffusive water permeability in isolated kidney proximal tubule cells. Nature of the cellular pathways. J. Membrane Biol. 104:35–43

    Google Scholar 

  • Carpi-Medina, P., Whittembury, G. 1988. Comparison of transcellular and transepithelial water osmotic permeabilities in the isolated proximal straight tubule of the rabbit kidney. Pfluegers Arch. 412:66–14

    Google Scholar 

  • Cohen, B.E. 1975. The permeability of liposomes to nonelectrolytes: II. The effect of nystatin and gramicidin A. J. Membrane Biol. 20:235–268

    Google Scholar 

  • Dainty, J., Ginzburg, B.Z. 1963. Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J. Theor. Biol. 5:256–265

    Google Scholar 

  • Echevarría, M. 1990. Permeabilidad difusiva a agua y algunos noelectrolitos en células del túbulo proximal. Ph.D. Thesis, Universidad Simón Bolívar, Caracas, Venezuela

    Google Scholar 

  • Echevarría, M., Frindt, G., Preston, G., Milovanovic, S., Agre, P., Fischbarg, J., Windhager, E.E. 1993. Expression of multiple water channels activities in Xenopus oocytes injected with mRNA from rat kidney. J. Gen. Physiol. 101:827–841

    Google Scholar 

  • Echevarría, M., González, E., Gutiérrez, A.M., Whittembury, G. 1994. Water and urea diffusive permeabilities in isolated proximal tubule cells. Am. J. Physiol. 267:F709-F715

    Google Scholar 

  • Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes. Physiol. Rev. 60:510–550

    Google Scholar 

  • Finkelstein, A. 1987. Water Movement Through Lipid Bilayers, Pores and Plasma Membranes. Theory and Reality. John Wiley & Sons, New York

    Google Scholar 

  • Finkelstein, A. 1993. The water permeability on narrow pores. In: Isotonic Transport in Leaky Epithelia. H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen, J. Hess-Thaysen, editors. Alfred Benzon Symposium No. 34. pp. 487–503. Munksgaard, Copenhagen

    Google Scholar 

  • González, E., Carpi-Medina, P., Linares, H., Whittembury, G. 1982. Water osmotic permeability of isolated proximal straight tubules. Am. J. Physiol. 242:F321-F330

    Google Scholar 

  • Heckmann, K. 1972. Single file diffusion. In: Passive Permeability of Cell Membranes. F. Kreuzer, J.F. Slegers, editors. pp. 127–153. Plenum, New York

    Google Scholar 

  • Hill, A.E., Shachar-Hill, B. 1993. A mechanism for isotonic fluid flow through the tight junctions of Necturus gallbladder epithelium. J. Membrane Biol. 136:253–262

    Google Scholar 

  • Hille, B. 1992. Na and K channels of axons. In: Ionic Channels of Excitable Membranes. Second Edition. pp. 65–69. Sinauer Associates, MA

    Google Scholar 

  • House, C.R. 1974. Water Transport in Cells and Tissues. Edward Arnold, London

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 217:229–246

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45:143–179

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1963. Permeability of composite membranes. Trans. Faraday Soc. 59:1918–1953

    Google Scholar 

  • Lindemann, B. 1984. Real time area-tracker records cellular volume changes from video images. Rev. Sci. Instr. 55:1788–1790

    Google Scholar 

  • Macey, R.I. 1984. Transport of water and urea in red blood cells. Am. J. Physiol. 246:C195-C203

    Google Scholar 

  • Macey, R.I., Farmer, R.E.L. 1970. Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta 211:104–106

    Google Scholar 

  • Nielsen, S.B., Smith, L., Christensen, E.I., Knepper, M.A., Agre, P. 1993. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol. 120:371–383

    Google Scholar 

  • Ogston, A.G. 1958. The spaces in uniform suspension fibers. Trans. Faraday Soc. 54:1754–1757

    Google Scholar 

  • Pappenheimer, J.R., Renkin, E.M., Borrero, L.M. 1951. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46

    Google Scholar 

  • Pedley, T.J. 1983. Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q. Rev. Biophys. 16:115–150

    Google Scholar 

  • Preston, G.M., Carrol, T.P., Guggino, W.B., Agre, P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    CAS  PubMed  Google Scholar 

  • Renkin, E.M., Curry, F.E. 1979. Transport of water and solutes across capillary endothelium. In: Membrane Transport in Biology. Vol. IV. G. Giebisch, D.C. Tosteson, H.H. Ussing, editors. pp. 1–45. Academic, New York

    Google Scholar 

  • Schafer, J.A. 1990. Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule. Annu. Rev. Physiol. 52:709–726

    Google Scholar 

  • Schafer, J.A., Reeves, W.B., Andreoli, T.E. 1992. Mechanisms of fluid transport across renal tubules. In: Handbook of Physiology: Renal Physiology, Section 8. E.E. Windhager, editor. pp. 659–713. American Physiological Society, Oxford University, Oxford

    Google Scholar 

  • Sha'afi, R.I., Rich, G.T., Mikulecky, D.C., Solomon, A.K. 1970. Determination of urea permeability in red cells by minimum method. J. Gen. Physiol. 55:427–450

    Google Scholar 

  • Schultz, S.G., Solomon, A.K. 1961. Determination of the effective hydrodynamic radii of small molecules by microviscosity. J. Gen. Physiol. 445:1189–1199

    Google Scholar 

  • Solomon, A.K. 1968. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51:336s-364s

    Google Scholar 

  • Solomon, A.K. 1989. On the equivalent pore radius. J. Membrane Biol. 94:227–232

    Google Scholar 

  • Solomon, A.K. 1993. Do water and urea cross the red cell membrane through the same channel? In: Isotonic Transport in Leaky Epithelia. H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen, J. Hess-Thaysen, editors. Alfred Benzon Symposium No. 34. pp. 450–486. Munksgaard, Copenhagen

    Google Scholar 

  • van Hoek, A.N., Verkman, A.S. 1992. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267:18267–18269

    Google Scholar 

  • Verkman, A.S. 1989. Mechanisms and regulation of water permeability in renal epithelia. Am. J. Physiol. 257:C837-C850

    Google Scholar 

  • Verkman, A.S., van Hoeck, A.N., Zhang, R. 1993. Identification and molecular cloning of water transporting proteins. In: Isotonic Transport in Leaky Epithelia. H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen, J. Hess-Thaysen, editors. Alfred Benzon Symposium No. 34. pp. 388–399. Munksgaard, Copenhagen

    Google Scholar 

  • Welling, L.W., Welling, D.J., Ochs, T.J. 1987. Video measurement of basolateral NaCl reflection coefficient in proximal tubule. Am J. Physiol. 253:F290-F298

    Google Scholar 

  • Whittembury, G., Carpi-Medina, P. 1988. Renal reabsorption of water: Are there pores in proximal tubule cells? NIPS 3:61–65

    Google Scholar 

  • Whittembury, G., Carpi-Medina, P., González, E. 1987. Channels for water flow in epithelia. Characteristics and regulation. Acta Physiol. Pharmacol. Latinoamericana 37:555–573

    Google Scholar 

  • Whittembury, G., Carpi-Medina, P., Gonzalez, E., Linares, H. 1984. Effect of para-chloromercuribenzensulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim. Biophys. Acta 775:365–373

    Google Scholar 

  • Whittembury, G., Echevarría, M., Gutiérrez, A., González, E. 1991. Contraluminal cell membrane water channels in PST exclude urea (U) and acetamide (A) but are formamide (F) permeable. J. Am. Soc. Nephrol. 1:729A

    Google Scholar 

  • Whittembury, G., Echevarría, M., Gutiérrez, A., González, E. 1992. Contraluminal cell membrane water channels in PST exclude urea (U) and acetamide (A) but are formamide (F) permeable. Biophys. J. 61:A514 (Abstr.)

    Google Scholar 

  • Whittembury, G., Echevarría, M., Gutierrez, A., Gonzalez, E. 1993. Absorption of salt and water in the proximal tubule revisited. In: Isotonic Transport in Leaky Epithelia. H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen, J. Hess-Thaysen, editors. Alfred Benzon Symposium No. 34. pp. 37–52. Munksgaard, Copenhagen

    Google Scholar 

  • Whittembury, G., Lindemann, B., Carpi-Medina, P., González, E., Linares, H. 1986. Continuous measurements of cell volume changes in single kidney tubules. Kidney Int. 30:187–191

    Google Scholar 

  • Whittembury, G., Reuss, L. 1992. Mechanisms of coupling of solute and solvent transport in epithelia. In: The Kidney: Physiology and Pathophysiology, D.W. Seldin, G. Giebisch, editors. pp. 317–360. Raven, New York

    Google Scholar 

  • Whittembury, G., Sugino, N., Solomon, A.K. 1960. Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature 187:699–703

    Google Scholar 

  • Zeidel, M.L., Ambudkar, S.V., Smith, B.L., Agre, P. 1992. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    CAS  PubMed  Google Scholar 

  • Zhang, R., Skach, W., Hasegawa, H., van Hoek, A., Verkman, A.S. 1993. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J. Cell Biol. 120:359–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part from grants from CONICIT, Consejo de Desarrollo Científico y Humanístico of UCV and Fundación Polar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, A.M., González, E., Echevarría, M. et al. The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics. J. Membarin Biol. 143, 189–197 (1995). https://doi.org/10.1007/BF00233447

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233447

Key words

Navigation