Skip to main content
Log in

Ionic permeabilities of anAplysia giant neuron

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In a giant neuron ofAplysia californica, permeabilities and conductances obtained by measuring net fluxes of Na+, K+ and Cl with ion-specific microelectrodes were compared with those obtained by measuring transmembrane current and potential changes when the three ions were varied in the external solution. Net fluxes were measured with ion-specific microelectrodes, after blocking metabolic processes, thus allowing movement of ions down their electrochemical gradients. Permeabilities and conductances obtained from the “chemical” measurements (i.e., ion-specific electrodes) were generally comparable to the values obtained from “electrical” measurements. Where discrepancies occurred, they could be explained by showing that some of the assumptions necessary to use the “electrical” method were not quantitatively true in this system. The absolute magnitudes of the permeabilities are significantly less than those found in many axonal preparations. There is also a relatively highP Na/P K ratio. The selectivity of the membraneagainst ions such as Tris+ and MeSO 3 is not good, Tris+ being nearly as permeable as Na+ and MeSO 3 about one-half as permeable as Cl. These properties may be characteristic of somal membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., Freygang, W. 1962. The K+ and Cl conductance of frog muscle membrane.J. Physiol. 163:61

    Google Scholar 

  • Barker, J. L., Levitan, H. 1971. Salicylate: Effect on membrane permeability of molluscan neurons.Science 172:1245

    PubMed  Google Scholar 

  • Barker, J. L., Levitan, H. 1972. Effect of non-narcotic analgesics on membrane permeability of molluscan neurons.Nature New Biol. 239:55

    PubMed  Google Scholar 

  • Brinley, F. J. 1965. Na+ and Cl concentrations and fluxes in the isolated giant axon ofHomarus.J. Neurophysiol. 28:742

    PubMed  Google Scholar 

  • Brodwick, M. S., Junge, D. 1972. Post-stimulus hyperpolarization and slow potassium conductance increase inAplysia giant neurone.J. Physiol. 233:549

    Google Scholar 

  • Brown, A. M., Berman, P. R. 1970. Mechanism of excitation ofAplysia neurons by CO2.J. Gen. Physiol. 56:543

    PubMed  Google Scholar 

  • Brown, A. M., Brown, H. M. 1973. Light response of anAplysia neuron.J. Gen. Physiol. 62:239

    PubMed  Google Scholar 

  • Brown, A. M., Walker, J. L., Sutton, R. B. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects inAplysia neurons.J. Gen. Physiol. 56:559

    PubMed  Google Scholar 

  • Brown, H. M., Hagiwara, S., Koike, H., Meech, R. W. 1970. Membrane properties of a barnacle photoreceptor examined by voltage clamp technique.J. Physiol. 208:385

    PubMed  Google Scholar 

  • Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., Shaw, T. I. 1960. The effects of injecting “energy rich” phosphate compounds on the active transport of ions in the giant axons ofLoligo.J. Physiol. 152:561

    PubMed  Google Scholar 

  • Carpenter, D. O. 1970. Membrane potential produced directly by the Na+ pump inAplysia neurons.Comp. Biochem. Physiol. 35:371

    Google Scholar 

  • Carpenter, D. O. 1973. Electrogenic sodium pump and high specific resistance in nerve cell bodies of the squid.Science 179:1336

    PubMed  Google Scholar 

  • Cole, K. S. 1949. Dynamic electrical characteristics of squid axon membrane.Arch. Sci. Physiol. 3:253

    Google Scholar 

  • DiPolo, R. 1972. Cl fluxes in isolated dialyzed barnacle muscle fibers.J. Gen. Physiol. 60:471

    PubMed  Google Scholar 

  • Eaton, D. C. 1972. Potassium ion accumulation near a pacemaking cell ofAplysia.J. Physiol. 224:421

    PubMed  Google Scholar 

  • Frazier, W. T., Kandel, E. P., Kupferman, I., Waziri, R., Coggeshall, R. E. 1967. Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia californica.J. Neurophysiol. 30:1258

    Google Scholar 

  • Gorman, A. L. F., Marmor, M. F. 1970. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone.J. Physiol. 210:897

    PubMed  Google Scholar 

  • Gorman, A. L. F., Mirolli, M. 1972. The passive electrical properties of the membrane of a molluscan neurone.J. Physiol. 227:35

    PubMed  Google Scholar 

  • Hagiwara, S., Eaton, D. C., Stuart, A. E., Rosenthal, N. P. 1972. Cation selectivity of the resting membrane of squid axon.J. Membrane Biol. 9:373

    Google Scholar 

  • Hagiwara, S., Toyama, Y., Hayashi, H. 1971. Mechanisms of anion and cation permeations in the resting membrane of barnacle muscle fibre.J. Gen. Physiol. 57:408

    PubMed  Google Scholar 

  • Hodgkin, A. L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibers.J. Physiol. 148:127

    PubMed  Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of Na+ ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37

    Google Scholar 

  • Hurlbut, W. P. 1970. Ion movements in nerve.In: Membranes and Ion Transport. E. E. Bittar, editor. Vol. 2. Wiley-Interscience, London

    Google Scholar 

  • Kandel, E. R., Tauc, L. 1966. Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission.J. Physiol. 183:287

    PubMed  Google Scholar 

  • Kerkut, G. A., Meech, R. W. 1967. The effects of ions on the membrane potential of snail neurons.Comp. Biochem. Physiol. 20:411

    PubMed  Google Scholar 

  • Kunze, D., Brown, A. M. 1974. Ionic activities in identifiableAplysia neurons.In: pH and Ion-selective Microelectrodes. H. Berman and N. Hebert, editors. p. 57. Plenum Press, New York

    Google Scholar 

  • Moore, L. E. 1969. Anion permeability of frog skeletal muscle.J. Gen. Physiol. 54:33

    PubMed  Google Scholar 

  • Richards, C. D. 1969. Chloride fluxes in crab muscle fibres.J. Physiol. 202:211

    PubMed  Google Scholar 

  • Russell, J. M., Brown, A. M. 1972a. Active transport of chloride by the giant neuron ofAplysia abdominal ganglion.J. Gen. Physiol. 60:499

    PubMed  Google Scholar 

  • Russell, J. M., Brown, A. M. 1972b. Active transport of potassium by the giant neuron ofAplysia abdominal ganglion.J. Gen. Physiol. 60:519

    PubMed  Google Scholar 

  • Shanes, A. M., Berman, M. D. 1955. Kinetics of ion movement in the squid giant axon.J. Gen. Physiol. 39:279

    PubMed  Google Scholar 

  • Tasaki, I. 1963. Permeability of squid axon membrane to various ions.J. Gen. Physiol. 46:755

    PubMed  Google Scholar 

  • Thomas, R. C. 1969. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium.J. Physiol. 201:495

    PubMed  Google Scholar 

  • Wald, F. 1972. Ionic differences between somatic and axonal action potentials in snail giant neurons.J. Physiol. 220:267

    PubMed  Google Scholar 

  • Walkei, J. L. 1971. Ion specific liquid ion exchanger microelectrodes.Analyt. Chem. 43:89A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, D.C., Russell, J.M. & Brown, A.M. Ionic permeabilities of anAplysia giant neuron. J. Membrain Biol. 21, 353–374 (1975). https://doi.org/10.1007/BF01941076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941076

Keywords

Navigation