Skip to main content
Log in

Calcium and inositol trisphosphate receptors

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allbritton, N.L., Meyer, T. 1993. Localized calcium spikes and propagating calcium waves. Cell Calcium 14:691–697

    Google Scholar 

  2. Anholt, R.R.H. 1994. Signal integration in the nervous system: adenylate cyclases as molecular coincidence detectors. Trends Neurosci. 17:37–41

    Google Scholar 

  3. Atri, A., Amundsen, J., Clapham, D., Sneyd, J. 1993. A singlepool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65:1727–1739

    Google Scholar 

  4. Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  5. Berridge, M.J. 1993. A tale of two messengers. Nature 365:388–389

    Google Scholar 

  6. Berridge, M.J., Dupont, G. 1994. Spatial and temporal signalling by calcium. Curr. Op. Cell Biol. 6:267–274

    Google Scholar 

  7. Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Google Scholar 

  8. Bezprozvanny, I., Ehrlich, B.E. 1993. Divalent cation conduction of the inositol 1,4,5-trisphosphate gated calcium channels of canine cerebellum. Biophys. J. 64:A328

    Google Scholar 

  9. Bezprozvanny, I., Watras, J., Ehrlich, B.E. 1991. Bell-shaped calcium-response curves for Ins(1,4,5)0115–01 and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Google Scholar 

  10. Blondel, O., Takeda, J., Janssen, H., Seino, S., Bell, G.I. 1993. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J. Biol. Chem. 268:11356–11363

    Google Scholar 

  11. Brillantes, A-M.B., Ondrias, K., Jayaraman, T., Scott, A., Kobrinsky, S.E., Ehrlich, B.E., Marks, A.R. 1994. FKBP12 optimises function of the cloned expressed calcium release channel (ryanodine receptor). Biophys. J. 66:A19

    Google Scholar 

  12. Burgess, G.M., Irvine, R.F., Berridge, M.J., McKinney, J.S., Putney, J.W., Jr. 1984. Actions of inositol phosphates on calcium pools in guinea pig hepatocytes. Biochem. J. 224:741–746

    Google Scholar 

  13. Champeil, P., Combettes, L., Berthon, B., Doucet, E., Orlowski, S., Claret, M. 1989. Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J. Biol. Chem. 264:17665–17673

    Google Scholar 

  14. Chen S.R.W., Vaughan, D.M., Airey, J.A., Coronado, R., MacLennan, D.H. 1993. Functional expression of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum in COS-1 cells. Biochemistry 32:3743–3753

    Google Scholar 

  15. Chen, S.R.W., Zhang, L., MacLennan, D.H. 1993. Antibodies as probes for Ca2+ activation sites on the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268:13414–13421

    Google Scholar 

  16. Combettes, L., Claret, M., Champeil, P. 1992. Do submaximal InsP3 concentrations only induce partial release discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca2+ concentration? FEBS Lett. 301:287–290

    Google Scholar 

  17. Danoff, S.K., Ferris, C.D., Donath, C., Fischer, G.A., Munemitsu, S., Ullrich, A., Snyder, S.H., Ross, C.A. 1991. Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. USA 88:2951–2955

    Google Scholar 

  18. Danoff, S.K., Supattapone, S., Snyder, S.H. 1988. Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254:701–705

    Google Scholar 

  19. DiPolo, I.L., Marty, A. 1994. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12:663–673

    Google Scholar 

  20. Fabiato, A., Fabiato, F. 1979. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from sarcoplasmic reticulum of skinned cardiac cells. Nature 281:146–148

    Google Scholar 

  21. Ferris, C.D., Cameron, A.M., Huganir, R.L., Snyder, S.H. 1992. Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356:350–352

    Google Scholar 

  22. Ferris, C.D., Huganir, R.L., Bredt, D.S., Cameron, A.M., Snyder, S.H. 1991. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. USA 88:2232–2235

    Google Scholar 

  23. Ferris, C.D., Huganir, R.L., Supattapone, S., Snyder, S.H. 1989. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342:87–89

    Google Scholar 

  24. Ferris, C.D., Snyder, S.H. 1992. Inositol 1,4,5-trisphosphateactivated calcium channels. Ann. Rev. Physiol. 54:469–488

    Google Scholar 

  25. Finch, E.A., Turner, T.J., Goldin, S.M. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Google Scholar 

  26. Friel, D.D., Tsien, R.W. 1992. A caffeine- and ryanodinesensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i. J. Physiol. 450:217–246

    Google Scholar 

  27. Furuichi, T., Shiota, C., Mikoshiba, K. 1990. Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues. FEBS Lett. 267:85–88

    Google Scholar 

  28. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, M., Mikoshiba, K. 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Google Scholar 

  29. Galione, A. 1993. Cyclic ADP-ribose: a new way to control calcium. Science 259:325–326

    Google Scholar 

  30. Galione, A., McDougall, A., Busa, W.B., Willmott, N., Gillot, I., Whitaker, M. 1993. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 261:348–352

    Google Scholar 

  31. Györke, S., Palade, P. 1994. Ca2+-dependent negative control mechanism for Ca2+-induced Ca2+ release in crayfish muscle. J. Physiol. 476:315–322

    Google Scholar 

  32. Hill, T.D., Campos-Gonzalez, R., Kindman, H., Boynton, A.L. 1988. Inhibition of inositol trisphosphate-stimulated calcium mobilization by calmodulin antagonists in rat liver epithelial cells. J. Biol. Chem. 263:16479–16484

    Google Scholar 

  33. Iino, M. 1990. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 95:1103–1122

    Google Scholar 

  34. Iino, M., Endo, M. 1992. Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 360:76–78

    Google Scholar 

  35. Iino, M., Yamazawa, T., Miyashita, Y., Endo, M., Kasai, H. 1993. Critical intracellular Ca2+ concentration for all-or-none Ca2+ spiking in single smooth muscle cells. EMBO J. 12:5287–5291

    Google Scholar 

  36. Ikemoto, N., Antoniu, B., Kang, J-J., Mészáros, L.G., Ronjat, M. 1991. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30:5230–5237

    Google Scholar 

  37. Irvine, R.F. 1990. “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 262:5–9

    Google Scholar 

  38. Jaffe, L.F. 1991. The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc. Natl. Acad. Sci. USA 88:9883–9887

    Google Scholar 

  39. Javaraman, T., Brillantes, A.M., Timerman, A.P., Fleischer, S., Erdjument-Bromage, H., Tempst, P., Marks, A.R. 1992. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267:9474–9477

    Google Scholar 

  40. Jean, T., Klee, C.B. 1986. Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (NG108–15) microsomes. J. Biol. Chem. 261:16414–16420

    Google Scholar 

  41. Kalinoski, D.L., Aldinger, S.B., Boyle, A.G., Huque, T., Maracek, J.F., Prestwich, G.D., Restrepo, D. 1992. Characterization of a novel inositol 1,4,5-trisphosphate receptor in isolated olfactory neurones. Biochem. J. 281:449–456

    Google Scholar 

  42. Khan, A.A., Steiner, J.P., Snyder, S.H. 1992. Plasma membrane inositol 1,4,5-trisphosphate receptor of lymphocytes: selective enrichment in sialic acid and unique binding specificity. Proc. Natl. Acad. Sci. USA 89:2849–2853

    Google Scholar 

  43. Kume S., Muto, A., Aruga, J., Nakagawa, T., Michikawa, T., Furuichi, T., Nakade, S., Okano, H., Mikoshiba, K. 1993. The Xenopus IP3 receptor: structure, function and localization in oocytes and eggs. Cell 75:555–570

    Google Scholar 

  44. Lai, F.A., Meissner, G. 1989. The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. J. Bioenerg. Biomembr. 21:227–246

    Google Scholar 

  45. Lee, H.C. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP ribose. J. Biol. Chem. 268:293–299

    Google Scholar 

  46. Lee, H.C., Aarhus, R., Graeff, R., Gurnack, M.E., Walseth, T.F. 1994. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370:307–309

    Google Scholar 

  47. Loomis-Husselbee, J.W., Dawson, A.P. 1993. A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca2+ release from permeabilized L1210 cells. Biochem. J. 289:861–866

    Google Scholar 

  48. Lytton, J., Nigam, S.R. 1992. Intracellular calcium: molecules and pools. Curr. Op. Cell. Biol. 4:220–226

    Google Scholar 

  49. Maranto, A.R. 1994. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J. Biol. Chem. 269:1222–1230

    Google Scholar 

  50. Marshall, I.C.B., Taylor, C.W. 1993. Regulation of inositol 1,4,5-trisphosphate receptors. J. Exp. Biol. 184:161–182

    Google Scholar 

  51. Marshall, I.C.B., Taylor, C.W. 1993. Biphasic effects of cytosolic calcium on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J. Biol. Chem. 268:13214–13220

    Google Scholar 

  52. Marshall, I.C.B., Taylor, C.W. 1994. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem. J. 301:591–598

    Google Scholar 

  53. McPherson, P.S., Campbell, K.P. 1993. The ryanodine receptor/Ca2+ release channel. J. Biol. Chem. 268:13765–13768

    Google Scholar 

  54. Meyer, T., Holowka, D., Stryer, L. 1988. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240:653–656

    Google Scholar 

  55. Meyer, T., Stryer, L. 1990. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA 87:3841–3845

    Google Scholar 

  56. Michell, R.H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147

    Google Scholar 

  57. Michikawa, T., Hamanaka, H., Otsu, H., Yamamoto, A., Miyawaki, A., Furuichi, T., Tashiro, Y., Mikoshiba, K. 1994. Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 269:9184–9189

    Google Scholar 

  58. Mignery, G.A., Johnston, P.A., Südhof, T.C. 1992. Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellum InsP3 receptor. J. Biol. Chem. 267:7450–7455

    Google Scholar 

  59. Mignery, G.A., Südhof, T.C. 1990. The ligand binding site and transduction mechanism in the inositol-1,4,5-trisphosphate receptor. EMBO J. 9:3893–3898

    Google Scholar 

  60. Mignery, G.A., Südhof, T.C., Takei, K., De Camilli, P. 1989. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Google Scholar 

  61. Mikoshiba, K. 1993. Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol. Sci 14:86–89

    Google Scholar 

  62. Miller, C. 1992. Hunting for the pore of voltage-gated channels. Curr. Biol. 2:573–575

    Google Scholar 

  63. Missiaen, L., De Smedt, H., Droogmans, G., Casteels, R. 1992. Ca2+ release induced by inositol 1,4,5-trisphosphate is a steadystate phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature 357:599–602

    Google Scholar 

  64. Missiaen, L., De Smedt, H., Parys, J.B., Casteels, R. 1994. Coactivation of inositol trisphosphate-induced Ca2+ release by cytosolic Ca2+ is loading-dependent. J. Biol. Chem. 269:7238–7242

    Google Scholar 

  65. Missiaen, L., Taylor, C.W., Berridge, M.J. 1992. Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphatesensitive stores of rat hepatocytes. J. Physiol. 455:623–640

    Google Scholar 

  66. Miyawaki, A., Furuichi, T., Maeda, N., Mikoshiba, K. 1990. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5:11–18

    Google Scholar 

  67. Mourey, R.J., Verma, A., Supattapone. S., Snyder, S.H. 1990. Purification and characterization of the inositol 1,4,5-trisphosphate receptor protein from rat vas deferens. Biochem. J. 270: 383–389

    Google Scholar 

  68. Muallem, S., Pandol, S.J., Beeker, T.G. 1989. Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264:205–212

    Google Scholar 

  69. Nahorski, S.R., Potter, B.V.L. 1989. Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10:139–144

    Google Scholar 

  70. Nakade, S., Rhee, S.K., Hamanaka, H., Mikoshiba, K. 1994. Cyclic AMP-dependent phosphorylation of an immunoaffinitypurified homotetrameric inositol 1,4,5-trisphosphate receptor (type 1) increases Ca2+ flux in reconstituted lipid vesicles. J. Biol. Chem. 269:6735–6742

    Google Scholar 

  71. Nakagawa. T., Okano, H., Furuichi, T., Aruga, J., Mikoshiba, K. 1991. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in tissue-specific and developmentally specific manner. Proc. Natl. Acad. Sci. USA 88:6244–6248

    Google Scholar 

  72. Nelson, T.E., Nelson, K.E. 1990. Intra- and extraluminal sarcoplasmic reticulum membrane regulatory sites for Ca2+-induced Ca2+ release. FEBS Lett. 263:292–294

    Google Scholar 

  73. Nunn, D.L., Taylor, C.W. 1992. Luminal Ca2+ increases the sensitivity of Ca2+ stores to inositol 1,4,5-trisphosphate. Mol. Pharmacol. 41:115–119

    Google Scholar 

  74. Oldershaw, K.A., Taylor, C.W. 1993. Luminal Ca2+ increases the affinity of inositol 1,4,5-trisphosphate for its receptor. Biochem. J. 292:631–633

    Google Scholar 

  75. Parys. J.B., Missiaen, L., De Smedt, H., Casteels, R. 1993. Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. J. Biol. Chem. 268:25206–25212

    Google Scholar 

  76. Pietri, F., Hilly, M., Mauger, J-P. 1990. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 265:17478–17485

    Google Scholar 

  77. Putney, J.W., Jr., Bird, G.St.J. 1993. The inositol phosphatecalcium signalling system in nonexcitable cells. Endocr. Rev. 14:610–631

    Google Scholar 

  78. Rapp, P.E., Mees, A.I., Sparrow, C.T. 1981. Frequency encoded biochemical regulation is more accurate than amplitude dependent control. J. Theor. Biol. 90:531–544

    Google Scholar 

  79. Renard-Rooney, D.C., Hajnóczky, G., Seitz, M.B., Schneider, T.G., Thomas, A.P. 1993. Imaging of inositol 1,4,5-trisphosphate-induced Ca2+ fluxes in single permeabilized hepatocytes: demonstration of both quantal and nonquantal patterns of Ca2+ release. J. Biol. Chem. 268:23601–23610

    Google Scholar 

  80. Richardson, A., Taylor, C.W. 1993. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J. Biol. Chem. 268:11528–11533

    Google Scholar 

  81. Rizzuto, R., Brini, M., Murgia, M., Pozzan, T. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighbouring mitochondria. Science 262:744–747

    Google Scholar 

  82. Rooney, T.A., Thomas, A.P. 1993. Intracellular calcium waves generated by Ins(1,4,5)P3-dependent mechanisms. Cell Calcium 14:674–690

    Google Scholar 

  83. Rossier, M.F., Bird, G.St.J., Putney, J.W., Jr. 1991. Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphatesensitive organelle in rat liver. Possible linkage to the plasma membrane through actin microfilaments. Biochem. J. 274:643–650

    Google Scholar 

  84. Sayers, L.G., Brown, G.R., Michell, R.H., Michelangeli, F. 1993. The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem. J. 289:883–887

    Google Scholar 

  85. Shuttleworth, T.J. 1992. Ca2+release from inositol trisphosphatesensitive stores is not modulated by intraluminal [Ca2+]. J. Biol. Chem. 267:3573–3576

    Google Scholar 

  86. Sitsapesan, R., Williams, A.J. 1994. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J. Membrane Biol. 137:215–226

    Google Scholar 

  87. Smith, J.S., Imagawa, T., Jianje, M., Fill, M, Campbell, K.P., Coronado, R. 1988. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. Biophys. J. 92:1–26

    Google Scholar 

  88. Sorrentino, V., Volpe. P. 1993. Ryanodine receptors: how many, where, and why? Trends Pharmacol. Sci. 14:98–103

    Google Scholar 

  89. Spät, A., Bradford, P.G., McKinney, J.S., Rubin, R.P., Putney, J.W., Jr. 1986. A saturable receptor for 32P-inositol- 1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319:514–516

    Google Scholar 

  90. Stern, M.D. 1992. Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13:183–192

    Google Scholar 

  91. Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial store of pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Google Scholar 

  92. Suematsu, E., Hirata, M., Hashimoto, T., Kuriyama, H. 1984. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem. Biophys. Res. Commun. 120:481–485

    Google Scholar 

  93. Supattapone, S., Worley, P.F., Baraban, J.M., Snyder, S.H. 1988. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263:1530–1534

    Google Scholar 

  94. Suárez-Isla, B.A., Alcayaga, C., Marengo, J.J., Bull, R. 1991. Activation of inositol trisphosphate-sensitive Ca2+ channels of sarcoplasmic reticulum from frog skeletal muscle. J. Physiol. 441:575–591

    Google Scholar 

  95. Südhof, T.C., Newton, C.L., Archer, B.T. III, Ushkaryov, Y.A., Mignery, G.A. 1991. Structure of a novel InsP3 receptor. EMBO J. 10:3199–3206

    Google Scholar 

  96. Takeshima, H., Nishi, M., Iwabe, N., Miyata, T., Hoso, T.ya., Masai, I., Hotta, Y. 1994. Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett. 337:81–87

    Google Scholar 

  97. Taylor, C.W. 1992. Kinetics of inositol 1,4,5-trisphosphatestimulated Ca2+ mobilization. Adv. Second Mess. Phos. Res. 26:109–142

    Google Scholar 

  98. Taylor, C.W., Marshall, I.C.B. 1992. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem. Sci. 17:403–407

    Google Scholar 

  99. Taylor, C.W., Richardson, A. Structure and function of inositol trisphosphate receptors. In: Intracellular Messengers, C.W. Taylor, editor. Pergamon Oxford 1993, p, 199–254

    Google Scholar 

  100. Tinker, A., Williams, A.J. 1992. Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. J. Gen. Physiol. 100:479–493

    Google Scholar 

  101. Tsien, R.W., Tsien, R.Y. 1990. Calcium channels, stores and oscillations. Annu. Rev. Cell Biol. 6:715–760

    Google Scholar 

  102. Wang, J., Best, P.M. 1992. Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature 359:739–741

    Google Scholar 

  103. Watras, J., Bezprozvanny, I., Ehrlich, B.E. 1991. Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple subconductance states. J. Neurosci. 11:3239–3249

    Google Scholar 

  104. Yamamoto-Hino, M., Sugiyama, T., Hikichi, K., Mattei, M.G., Hasegawa, K., Sekine, S., Sakurada, K., Miyawaki, A., Furuichi, T., Hasegawa, M., Mikoshiba, K. (1993). Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors and Channels (in press)

  105. Yao, T., Parker, I. 1993. Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores. J. Physiol. 468:275–296

    Google Scholar 

  106. Yao, Y., Parker, I. 1994. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J. Physiol. 476:17–28

    Google Scholar 

  107. Yoshikawa, S., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T., Mikoshiba, K. 1992. Molecular cloning of and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. J. Biol. Chem. 267:16613–16619

    Google Scholar 

  108. Zhang, B-X., Zhao, H., Muallem, S. 1993. Ca2+-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. J. Biol. Chem. 268:10997–11001

    Google Scholar 

  109. Zhao, H., Muallem, S. 1990. Inhibition of inositol 1,4,5-trisphosphate-mediated Ca2+ release by Ca2+ in cells from peripheral tissues. J. Biol. Chem. 265:21419–21422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work from the authors' laboratory is supported by the Wellcome Trust, and the Medical, and Agricultural and Food Research Councils. CWT is a Lister Institute Research Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C.W., Traynor, D. Calcium and inositol trisphosphate receptors. J. Membarin Biol. 145, 109–118 (1995). https://doi.org/10.1007/BF00237369

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237369

Key words

Navigation