Skip to main content
Log in

Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colony-stimulating factor

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I K) were most prominent in these cells. I Kcould be activated at potentials more positive than −40 mV. Half-maximal activation of I Kwas achieved at −13.8 mV and half-maximal inactivation of I Kwas determined at −33.8 mV. The recovery of I Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I Kshifted by 54 mV.

Extracellularly applied 10 mm tetraethylammonium chloride reduced I K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes.

The outward K+ currents showed a frequency dependence when depolarizing pulses were applied at a frequency of 1 Hz. A frequency-independent outward current (I K′) characterized by the same activation behavior as I Kwas detected. I K′was blocked completely by 10 nm charybdotoxin or by 10 nm noxiustoxin. In contrast to its effect on I K, 10 mm tetraethylammonium chloride did not reduce I K′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Attali B., Romey G., Honoré E., Schmid-Alliana A., Mattei G., Lesage F., Ricard P., Barhanin J., Lazdunski M. 1992. Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. J. Biol. Chem. 267:8650–8657

    Google Scholar 

  • Brockhaus J., Ilschner S., Banati R.B., Kettenmann H. 1993. Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J. Neurosci. 13:4412–4421

    Google Scholar 

  • Cai Y.C., Osborne P.B., North R.A., Dooley D.C., Douglass J. 1992. Characterization and functional expression of genomic DNA encoding the human lymphocyte type n potassium channel. DNA and Cell. Biol. 11:163–172

    Google Scholar 

  • Chandy K.G., Gutman G.A., Grissmer S. 1993. Physiological role, molecular structure and evolutionary relationship of voltage-gated potassium channels in T lymphocytes. Sem. Neurosci. 5:125–134

    Google Scholar 

  • Choquet D., Korn H. 1992. Mechanism of 4-arninopyridine action on voltage-gated potassium channels in lymphocytes. J. Gen. Physiol. 99:217–240

    Google Scholar 

  • Cook N.S., Quast U. 1989. Potassium channels pharmacology. In: Potassium channels. Structure, classification, function and therapeutic potential. N.S. Cook, editor, pp. 181–255, Ellis Horwood, Chichester

    Google Scholar 

  • DeCoursey T.E., Chandy K.G., Gupta S., Cahalan M.D. 1985. Voltage-dependent ion channels in T-lymphocytes. J. Neuroimmunol. 10:71–95

    Google Scholar 

  • Deutsch C., Chen L.Q. 1993. Heterologous expression of specific K+ channels in T lymphocytes: Functional consequences for volume regulation. Proc. Natl. Acad. Sci. USA 90:10036–10040

    Google Scholar 

  • Douglass J., Osborne P.B., Cai Y.C., Wilkinson M., Christie M.J., Adelman J.P. 1990. Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J. Immunol. 144:4841–4850

    Google Scholar 

  • Dreyer F. 1990. Peptide toxins and potassium channels. Rev. Physiol. Biochem. Pharmacol. 115:94–136

    Google Scholar 

  • Eder C., Fischer H.G., Hadding U., Heinemann U. (1995). Properties of voltage-gated currents of microglia developed with macrophage colony-stimulating factor. Pfluegers Arch. (in press).

  • Fischer H.G., Eder C., Hadding U., Heinemann U. 1995. Cytokine-dependent K+ channel profile of microglia at immunologically defined functional states. Neurosci. 64:183–191

    Google Scholar 

  • Fischer HJ., Nitzgen B., Germann T., Degitz K., Däubener W., Hadding U. 1993. Differentiation driven by granulocyte-macrophage colony-stimulating factor endows microglia with interferon-γ-independent antigen presentation function. J. Neuroimmunol. 42:87–96

    Google Scholar 

  • Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. 1987. Antigen presentation and tumor cytotoxicity by interferon-γ-treated microglial cells. Eur. J. Immunol. 17:1271–1278

    Google Scholar 

  • Gallin E.K. 1991. Ion channels in leukocytes. Physiol Rev. 71:775–811

    Google Scholar 

  • Garcia M.L., Galvez A., Garcia-Calvo M., King V.F., Vazquez J., Kaczorowski G.J. 1991. Use of toxins to study potassium channels. J. Bioenerg. Biomembr. 23:615–646

    Google Scholar 

  • Giulian D., Ingeman J.E. 1988. Colony-stimulating factors as promotors of ameboid microglia. J. Neurosci. 8:4707–4717

    Google Scholar 

  • Grissmer S., Dethlefs B., Wasmuth J.J., Goldin A.L., Gutman G.A., Cahalan M.D., Chandy K.G. 1990. Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc. Natl. Acad. Sci. USA 87:9411–9415

    Google Scholar 

  • Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflueger Arch. 391:85–100

    Google Scholar 

  • Hamilton J.A. 1993. Colony-stimulating factors, cytokines and monocyte-macrophages-some controversies. Immunol. Today 14:18–24.

    Google Scholar 

  • Hille B. 1992. Ionic channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Hunter C.A., Roberts C.W., Alexander J. 1992. Kinetics of cytokine mRNA production in the brains of mice with progressive toxoplasmic encephalitis. Eur. J. Immunol. 22:2317–2322

    Google Scholar 

  • Inaba K., Inaba M., Romani N., Aya H., Deguchi M., Ikehara S., Muramatsu S., Steinman R.M. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176:1693–1702

    Google Scholar 

  • Kettenmann H., Hoppe D., Gottmann K., Banati R., Kreutzberg G. 1990. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J. Neurosci. Res. 26:278–287

    Google Scholar 

  • Lewis R.S., Cahalan M.D. 1988. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science 239:771–775

    Google Scholar 

  • Mayer M.L., Sugiyama K. 1988. A modulatory action of divalent cations on transient outward current in cultured rat sensory neurones. J. Physiol. 396:417–433

    Google Scholar 

  • Metcalf D. 1989. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30

    Google Scholar 

  • Nelson D.J., Jow B., Jow F. 1990. Whole-cell currents in macrophages: I. Human monocyte-derived macrophages. J. Membrane Biol. 117:29–44

    Google Scholar 

  • Nörenberg W., Gebicke-Haerter P.J., Illes P. 1992. Inflammatory stimuli induce a new K+ outward current in cultured rat microglia. Neurosci. Lett. 147:171–174

    Google Scholar 

  • Nörenberg W., Gebicke-Haerter P.J., Illes P. 1994. Voltage-dependent potassium channels in activated rat microglia. J. Physiol. 475:15–32

    Google Scholar 

  • Raivich G., Gehrmann J., Kreutzberg G.W. 1991. Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J. Neurosci. Res. 30:682–686

    Google Scholar 

  • Sands S.B., Lewis R.S., Cahalan M.D. 1989. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J. Gen. Physiol. 93:1061–1074

    Google Scholar 

  • Spires S., Begenisich T. 1992. Chemical properties of the divalent cation binding site on potassium channels. J. Gen. Physiol. 100:181–193

    Google Scholar 

  • Williams G.T., Smith C.A., Spooncer E., Dexter T.M., Taylor D.R. 1990. Haemopoietic colony-stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76–79

    Google Scholar 

  • Ypey D.L., Clapham D.E. 1984. Development of a delayed outwardrectifying K+ conductance in cultured mouse peritoneal macrophages. Proc. Natl Acad. Sci. USA 81:3083–3087

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank B. Nitzgen for the preparation of cell cultures, M. Bullmann for technical assistance and F. Dreyer for helpful discussions and critical reading of the manuscript. We are grateful to F. Seiler, F. Dreyer and L. Possani for the generous gifts of r GM-CSF, dendrotoxin and noxiustoxin. This work was supported by DFG grant He-1128/6-2 and SFB 194 projects B3 and B11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, C., Fischer, H.G., Hadding, U. et al. Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colony-stimulating factor. J. Membarin Biol. 147, 137–146 (1995). https://doi.org/10.1007/BF00233542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233542

Key words

Navigation