Skip to main content
Log in

Coupling of ion transport in green cells ofAtriplex spongiosa leaves to energy sources in the light and in the dark

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The coupling of ion transport to energy sources in the light and in the dark in green cells ofAtriplex spongiosa leaves was investigated using light of different qualities, an inhibitor of electron transport (dichlorophenyl dimethyl urea), and an uncoupler (p-CF3O-carbonyl cyanide phenylhydrazone). Two different mechanisms of ion uptake were, distinguished. (1) A light-dependent Cl pump which is linked to light-dependent K+ uptake. The energy for this pump is probably derived from photosynthetic electron transport or from nicotinamide adenine dinucleotide phosphate, reduced form. This mechanism is dichlorophenyl dimethyl urea-sensitive and enhanced by uncouplers. (2) A mechanism independent of light, which operates at the same rate in the light and in the dark. This mechanism is sensitive to uncouplers. It is probably aK−Na exchange mechanism since K+ and Cl uptake and a small net uptake of H+ are balanced by Na+ loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arisz, W. H., Sol, H. H. 1956. Influence of light and sucrose on the uptake and transport of chloride inVallisneria leaves.Acta Bot. Neerl. 5:218.

    Google Scholar 

  • Atkinson, M. R., Polya, G. M. 1967. Salt stimulated adenosine triphosphatases from carrot, beet, andChara australis.Aust. J. Biol. Sci. 20:1069.

    Google Scholar 

  • —— 1968. Effects of L-ethionine, on adenosine triphosphate levels, respiration and salt accumulation in carrot xylem tissue.Aust. J. Biol. Sci. 21:409

    Google Scholar 

  • Budd, K., Laties, G. G. 1964. Ferricyanide-mediated transport of chloride by anaerobic corn roots.Plant Physiol.39:648.

    Google Scholar 

  • Bünning, E. 1953. Entwicklungs- und Bewegungsphysiologie der Pflanzen. 3 Aufl. Springer-Verlag, Berlin-Göttingen Heidelberg.

    Google Scholar 

  • Coster, H. G. L., Hope, A. B. 1968. Ionic relations of cells ofChara australis. XI. Chloride fluxes.Aust. J. Biol. Sci. 21:243.

    Google Scholar 

  • Cram, W. J. 1969. Respiration and energy-dependent movements of chloride at plasmalemma and tonoplast of carrot root cells.Biochim. Biophys. Acta 173:213.

    Google Scholar 

  • Fondeville, J. C., Borthwick, A. A., Hendricks S. B. 1966. Leaflet movement ofMimosa pudica L. indicative of phytochrome action.Planta 69:359.

    Google Scholar 

  • Galston, A. W. 1967. Phytochrome, control of rapid nyctinastic movements and membrane permeability inAlbizzia julibrissin.Planta 77:135.

    Google Scholar 

  • Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., Singh, R. M. M. 1966. Hydrogen ion buffers for biological research.Biochemistry 5:467.

    Google Scholar 

  • Heber, U., Santarius, K. A., 1965. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis.Biochim. Biophys. Acta 109:390.

    Google Scholar 

  • Hillman, W. S., Koukkari, W. L. 1967. Phytochrome, effects in the nyctinastic leaf movements ofAlbizzia julibrissin and some other legumes.Plant Physiol.42:1413.

    Google Scholar 

  • Hope, A. B. 1965. Ionic relations of cells ofChara australis. X. Effects of bicarbonate ions on electrical properties.Aust. J. Biol. Sci. 18:789.

    Google Scholar 

  • Jaffe, M. J. 1968. Phytochrome mediated bioelectric potentials in mung bean seedlings.Science 162:1016.

    Google Scholar 

  • Jeschke, W. D. 1967. Die cyclische und die nichtcyclische Phosphorylierung als Energiequelle der lichtabhängigen Chloridionenaufnahme beiElodea.Planta 73:161.

    Google Scholar 

  • — 1968. On the connection between electron transport and ion transport.Abh. Deut. Akad. Wiss. p. 127. Akademie-Verlag, Berlin.

    Google Scholar 

  • — Simonis, W. 1967. Effect of CO2 on photophosphorylationin vivo as revealed by the light-dependent Cl uptake inElodea densa.Z. Naturf. 22b:873.

    Google Scholar 

  • Jeschke, W. D., Simonis, W. 1969. Über die Wirkung von CO2 auf die lichtabhängige Cl-Aufnahme beiElodea densa. Regulation zwischen nichtcyclischer und cyclischer Photophosphorylierung.Planta 88:157.

    Google Scholar 

  • Koukkari, W. L., Hillman, W. S. 1969. Pulvini as the photoreceptors in the phytochrome effect on nyctinasty inAlbizzia julibrissin.Plant Physiol. 44:698.

    Google Scholar 

  • van Lookern-Campagne, R. N. 1957. Light-dependent chloride absorption inVallisneria leaves.Acta Bot. Neerl. 6:543.

    Google Scholar 

  • Lüttge, U., Osmond, C. B. 1970. Ion absorption inAtriplex leaf tissue. III. Site of metabolic control of light-dependent chloride secretion to epidermal bladders.Aust. J. Biol. Sci. (in press).

  • —, Pallaghy, C. K. 1969. Light triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport.Z. Pflanzenphysiol. 61:58.

    Google Scholar 

  • MacRobbie, E. A. C. 1962. Ionic relations ofNitella translucens.J. Gen. Physiol. 45:861.

    Google Scholar 

  • — 1956. The nature of the coupling between light energy and active ion transport inNitella translucens.Biochim. Biophys. Acta 94:64.

    Google Scholar 

  • — 1966a. Metabolic effects on ion fluxes inNitella translucens. I. Active influxes.Aust. J. Biol. Sci. 19:363.

    Google Scholar 

  • — 1966b. Metabolic effects on ion fluxes inNitella translucens. II. Tonoplast fluxes.Aust. J. Biol. Sci. 19:371.

    Google Scholar 

  • Osmond, C. B. 1968. Ion absorption inAtriplex leaf tissue. I. Absorption by mesophyll cells.Aust. J. Biol. Sci. 21:1119.

    Google Scholar 

  • — Lüttge, U., West, K. R., Pallaghy, C. K., Shacher-Hill, B. 1969. Ion absorption inAtriplex leaf tissue. II. Secretion of ions to epidermal bladders.Aust. J. Biol. Sci. 22:797.

    Google Scholar 

  • Polya G. M., Atkinson, M. R. 1969. Evidence for a direct involvement of electron transport in the high affinity ion accumulation system of aged beet parenchyma.Aust. J. Biol. Sci. 22:573.

    Google Scholar 

  • Rains, D. W. 1968. Kinetics and energetics of light-enhanced potassium absorption by corn leaf tissue.Plant Physiol. 43:394.

    Google Scholar 

  • Raven, J. A. 1967. Light stimulation of active ion transport inHydrodictyon africanum.J. Gen. Physiol. 50:1627.

    Google Scholar 

  • — 1968. The linkage of light-stimulated Cl influx to K and Na influxes inHydrodictyon africanum J. Exp. Bot. 19:233.

    Google Scholar 

  • — 1969. Action spectra for photosynthesis and light-stimulated ion transport processes inHydrodictyon africanum.New Phytol.68:45.

    Google Scholar 

  • Robertson, R. N. 1968. Protons, Electrons, Phosphorylation and Active Transport. Cambridge University Press, London.

    Google Scholar 

  • Smith, F. A., West, K. R. 1969. A comparison of the effects of metabolic inhibitors on chloride uptake and photosynthesis inChara corallina.Aust. J. Biol. Sci. 22:351.

    Google Scholar 

  • Tanada, T. 1968. A rapid photoreversible response of barley root tips in the presence of 3 indoleacetic acid.Proc. Nat. Acad. Sci. 59:376.

    Google Scholar 

  • Teichler-Zallen, D., Hoch, G. 1967. Cyclic electron transport in algae.Arch. Biochem. Biophys. 120:227.

    Google Scholar 

  • Weigl, J. 1963. Die Bedeutung der energiereichen Phosphate der Ionenaufnahme durch Wurzeln.Planta 60:307.

    Google Scholar 

  • — 1964a. Zur Hemmung der aktiven Ionenaufnahme durch Arsenat.Z. Naturf. 196:646.

    Google Scholar 

  • — 1964b. Über den Zusammenhang von Photophosphorylierung und aktiver Ionenaufnahme.Z. Naturf. 196:845.

    Google Scholar 

  • — 1967. Beweis für die Beteiligung von beweglichen Transportstrukturen (Trägern) beim Ionentransport durch pflanzliche Membranen und die Kinetik des Aniontransportes beiElodea im Licht, und im Dunkel.Planta 75:327.

    Google Scholar 

  • Winter, H. 1961. The uptake of cations byVallisneria leaves.Acta Bot. Neerl. 10:341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüttge, U., Pallaghy, C.K. & Osmond, C.B. Coupling of ion transport in green cells ofAtriplex spongiosa leaves to energy sources in the light and in the dark. J. Membrain Biol. 2, 17–30 (1970). https://doi.org/10.1007/BF01869847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869847

Keywords

Navigation