Skip to main content
Log in

Estimation of surface charges in some biological membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The resting membrane potential data existing in the literature for the giant axon of the squid, frog muscle and barnacle muscle have been analyzed from the standpoint of the theory of membrane potential due to Kobatake and co-workers. The average values derived for the effective charge density\(\overline {\phi X} \) (where\(\mathop \phi \limits^ - \) is a constant,\(0< \mathop \phi \limits^ -< 1\), and represents the fraction of counterions that are free, and\(\overline X \) is the stoichiometric charge density in the membrane) present on the different biomembranes existing in their normal ionic environment are 0.3, 0.325 and 0.17 M for the squid axon, frog and barnacle muscles, respectively. On the assumption that the values of\(\mathop \phi \limits^ - \) are 0.4 and 0.2 for nerve and muscle membranes, respectively, values of 0.75, 1.62 and 0.85 M have been derived for the stoichiometric charge density\((\overline X )\) present in the respective biological membranes. These correspond to 1 negative charge per 222, 103 and 195 Å of the membrane area of the squid axon, frog and barnacle muscles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H. 1956. The effect of internal and external potassium concentration on the membrane potential of frog muscle.J. Physiol. 133:631

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Meves, H. 1964. The effect of diluting the internal solution on the electrical properties of a perfused giant axon.J. Physiol. 170:541

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Shaw, T.I. 1962. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons.J. Physiol. 164:355

    Google Scholar 

  • Baskin, R.J. 1972. Surface charge and calcium binding in sarcoplasmic reticulum membranes.J. Bioenergetics 3:249

    Google Scholar 

  • Brismar, T. 1973. Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibers ofXenopus laevis. Potential clamp experiments.Acta Physiol. Scand. 87:474

    Google Scholar 

  • Chandler, W.K., Hodgkin, A.L., Meves, H. 1965. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.J. Physiol. 180:821

    Google Scholar 

  • D'Arrigo, J.S. 1973. Possible screening of surface charges on crayfish axon by polyvalent metal ions.J. Physiol. 231:117

    Google Scholar 

  • Elul, R. 1967. Fixed charge in the cell membrane.J. Physiol. 189:351

    Google Scholar 

  • Gilbert, D.L. 1971. Fixed surface charges.In: Biophysics and Physiology of Excitable Membranes. W.J. Adelman, editor. p. 359. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447

    Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations.J. Gen. Physiol. 61:669

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. 148:127

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. 128:61

    Google Scholar 

  • Kobatake, Y., Kamo, N. 1973. Transport processes in charged membranes.Prog. Polymer Sci. Japan 5:257

    Google Scholar 

  • Lakshminarayanaiah, N. 1969a. Transport Phenomena in Membranes. Academic Press, New York, p. 169

    Google Scholar 

  • Lakshminarayanaiah, N. 1969b. Transport Phenomena in Membranes. Academic Press, New York, p. 199

    Google Scholar 

  • Lakshminarayanaiah, N. 1969c. Transport Phenomena in Membranes. Academic Press, New York, pp. 366

    Google Scholar 

  • Lakshminarayanaiah, N. 1974. Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 16:145

    Google Scholar 

  • Lakshminarayanaiah, N. 1975a. Measurement of membrane potetial and estimation of effective fixed-charge density in membranes.J. Membrane Biol. 21:175

    Google Scholar 

  • Lakshminarayanaiah, N. 1975b.Addendum to: Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 21:191

    Google Scholar 

  • Lakshminarayanaiah, N., Rojas, E. 1973. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres.J. Physiol. 233:613

    Google Scholar 

  • Meyer, K.H., Sievers, J.F. 1936. La perméabilité des membranes. I. Théorie de la perméabilité ionique.Helv. Chim. Acta 19:649. II. Essais avec des membranes sélectives artificielles.Helv. Chim. Acta 19:665. IV. Analyse de la structure de membranes végétales et animales.Helv. Chim. Acta 19:987

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P. 1970. Effect of surface charge on the steady state potassium conductance of nodal membrane.Nature 228:164

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P. 1972. Effect of surface charge on the steady state potassium conductivity of the membrane of a node ofRanvier. I. Change in pH of external solution.Biofizika 17:412

    Google Scholar 

  • Narahashi, T. 1963. Dependence of resting and action potentials on internal potassium in perfused squid giant axons.J. Physiol. 169:91

    Google Scholar 

  • Rojas, E., Atwater, I. 1968. An experimental approach to determine membrane charges in squid giant axons.J. Gen. Physiol. 51:131s

    Google Scholar 

  • Rojas, E., Atwater, I., Bezanilla, F. 1970. Fixed charge structure of the squid axon membrane.In: Permeability and Function of Biological Membranes. L. Bolis, A. Katchalsky, R.D. Keynes, W.R. Loewenstein and B.A. Pethica, editors. p. 273. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Schauf, C.L. 1975. The interactions of calcium withMyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. 248:613

    Google Scholar 

  • Segal, J.R. 1968. Surface charge of giant axons of squid and lobster.Biophys. J. 8:470

    Google Scholar 

  • Steinbach, H.B., Spiegelman, S. 1943. The sodium and potassium balance in squid nerve axoplasm.J. Cell. Comp. Physiol. 22:187

    Google Scholar 

  • Teorell, T. 1936. Ionic transference numbers in cellophane membranes.J. Gen. Physiol. 19:917

    Google Scholar 

  • Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305

    Google Scholar 

  • Vogel, W. 1973. Effect of lanthanum at the nodal membrane.Experientia 29:1517

    Google Scholar 

  • Weast, R.C. 1972–73. Handbook of Chemistry and Physics. Chemical Rubber Company, Cleveland, Ohio, p. D-211

    Google Scholar 

  • Winger, A.G., Bodamer, G.M., Kunin, R. 1953. Some electrochemical properties of new synthetic ion exchange membranes.J. Electrochem. Soc. 100:178

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshminarayanaiah, N., Murayama, K. Estimation of surface charges in some biological membranes. J. Membrain Biol. 23, 279–292 (1975). https://doi.org/10.1007/BF01870254

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870254

Keywords

Navigation