Skip to main content
Log in

Blocking of the gramicidin channel by divalent cations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The conductance of the gramicidin channel in the presence of alkali ions is strongly reduced when divalent cations such as Ca++ or Ba++ are added to the aqueous solutions in concentrations between 0.1 and 1m. Under the same conditions, carrier-mediated alkali ion transport is not affected by Ca++ and Ba++. Different divalent cations, differ considerably in their blocking action on the gramicidin channel; the effect of Mg++ or Zn++ is much smaller than that of Ca++ and Ba++. Besides reducing the single-channel conductance, the blocking ions also change the current-voltage characteristic of the channel from a nearly, linear to a strongly saturating behavior. These observations suggest that Ca++ or Ba++ (which are not permeable themselves) bind to a site at or near the channel mouth, thereby reducing the rate by which permeable ions enter and leave the channel. The blocking effect is analyzed in terms of the potential energy profile of the permeable ion in the channel. The saturating current-voltage characteristic may be explained by the assumption that in the presence of the blocking ion the passage over the entrance barrier is rate-limiting and, at the same time, only weakly voltage-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S. 1975. Ion specificity of gramicidin channels. P. 369. Abstr. 5th Int. Biophys. Congress, Cogenhagen

  • Bamberg, E., Alpes, H., Apell, H.-J., Benz, R., Janko, K., Kolb, H.-A., Läuger, P., Gross, E. 1977. Studies on the Gramicidin Channel.In: FEBS Symposium on Biochemistry of Membrane Transport. G. Semenza and E. Carafoli, editors. Springer, Heidelberg

    Google Scholar 

  • Bamberg, E., Benz, R. 1976. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation.Biochim. Biophys. Acta 426:570

    Google Scholar 

  • Bamberg, E., Läuger, P. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranesJ. Membrane Biol. 11:177

    Google Scholar 

  • Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127

    Google Scholar 

  • Bamberg, E., Noda, K., Gross, E., Läuger, P. 1976. Single-channel parameters of gramicidins A, B and C.Biochim. Biophys. Acta 419:223

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    Google Scholar 

  • Cahalan, M., Begenisich, T. 1976. Sodium channel selectivity: Dependence on internal permeant ion concentration.J. Gen. Physiol. 68:111

    Google Scholar 

  • Chizmadjev, Y.A., Khodorov, B.J., Aityan, S.K. 1974. Analysis of the independence principle for the sodium channels of biological membranes.Bioelectrochem. Bioenergetics 1:301

    Google Scholar 

  • Eigen, M., Maass, G. 1966. Über die Kinetik der Metallkomplexbildung der Alkali- und Erdalkaliionen in wäßrigen Lösungen.Z. Physik. Chem. N.F. 49:163

    Google Scholar 

  • Eisenman, G., Krasne, S., Ciani, S. 1974. Further studies on ion selectivity.In: Proceedings of the International Workshop on Ion-Selective Electrodes and Enzyme Electrodes in Biology and Medicine. M. Kessler, L. Clark, D. Lübbers, I. Silver and W. Simon, editors. Urban and Schwarzenberg, München (in press)

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1976. Ionic selectivity, saturation, binding, and block in the gramicidin A channel: A preliminary report.In: 9th Jerusalem Symposium on Metal-Ligand Interactions in Organic and Biochemistry. B. Pullman, editor (in press)

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218

    Google Scholar 

  • Frehland, E., Läuger, P. 1974. Ion transport through pores: Transient phenomena.J. Theor. Biol. 47:189

    Google Scholar 

  • Glickson, J.D., Mayers, D.F., Settine, J.M., Urry, D.W. 1972. Spectroscopic studies on the conformation of gramicidin A. Proton magnetic resonance assignments, coupling constants, and H-D exchange.Biochemistry 11:477

    Google Scholar 

  • Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187

    Google Scholar 

  • Heckmann, K. 1972. Single-file diffusion.In: Biomembranes, Vol. 3, Passive Permeability of cell Membranes. pp. 127–153. F. Kreuzer and J.F.G. Slegers, editors. Plenum Press, New York

    Google Scholar 

  • Heckmann, K., Lindemann, B., Schnakenberg, J. 1972. Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion.Biophys. J. 12:683

    Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59:637

    Google Scholar 

  • Hille, B. 1975a. Ion selectivity, saturation and block in sodium channels. A four barrier model.J. Gen. Physiol. 66:535

    Google Scholar 

  • Hille, B. 1975b. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes. A Series of Advances. G. Eisenman, editor. pp. 255–323. M. Dekker, New York

    Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies, of the unit conductance channel.Biochim. Biophys. Acta 274:294

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423

    Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20

    Google Scholar 

  • Läuger, P., Neumcke, B. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes.In: Membranes. A Series of Advances. G. Eisenman, editor, Vol. 2, pp. 1–59. M. Dekker, New York

    Google Scholar 

  • Lindemann, B. 1968. Sodium-and calcium dependence of threshold potential in frog skin excitation.Biochim. Biophys. Acta 163:424

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    Google Scholar 

  • Myers, V.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta 274:313

    Google Scholar 

  • Neher, E. 1975. Ionic specificity of the gramicidin channel and the thallous ion.Biochim. Biophys. Acta 401:540

    Google Scholar 

  • Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1976. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin.J. Membrane Biol. 28:87

    Google Scholar 

  • Sandblom, J., Eisenman, G., Neher, E. 1976. Ionic selectivity, saturation and block in gramicidin A channels. I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states.J. Membrane Biol. 31:383

    Google Scholar 

  • Urry, D.A. 1971. The gramicidin A transmembrane channel: A proposed πL,D helix.Proc. Nat. Acad. Sci. USA. 68:672

    Google Scholar 

  • Urry, D.W. 1973. Polypeptide conformation and biological function. β-Helices (πL,D-helices) as permselective transmembrane channels.In: Conformation of Biological Molecules and Polymers. E.D. Bergmann and B. Pullman, editors. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Veatch, W.R., Fossel, E.T., Blout, E.R. 1974. The conformation of gramicidin A.Biochemistry 13:5249

    Google Scholar 

  • Woodbury, J.W. 1971. Eyring rate theory model of the current-voltage relationships of ion channels in excitable membranes.In: Chemical Dynamics: Papers in Honor of Henry Eyring, J.O. Hirschfelder and D. Henderson, editors. Advances in Chemical Physics, Vol. 21, pp. 601–617. Wiley, New York

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687

    Google Scholar 

  • Zwolinski, B.J., Eyring, H., Reese, C.E. 1949. Diffusion and membrane permeability.J. Phys. Chem. 53:1426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamberg, E., Läuger, P. Blocking of the gramicidin channel by divalent cations. J. Membrain Biol. 35, 351–375 (1977). https://doi.org/10.1007/BF01869959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869959

Keywords

Navigation