Skip to main content
Log in

Experimental depression of junctional membrane permeability in mammalian cell culture. A study with tracer molecules in the 300 to 800 dalton range

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Cell-to-cell junctional permeability in mammalian cell cultures was probed with a series of fluorescent tracers ranging 300 to 800 in molecular weight, during treatment with metabolic inhibitors, Ca-transporting ionophore, and carbon dioxide. Treatment with the combination of cyanide and iodoacetic acid (1–2mm each), but not with either one alone, caused reversible junctional blockade to all tracer molecular species, large and small. (Electrical coupling, however, persisted in a proportion of the junctions tested.) Treatment with the ionophore A23187 (2–10 μm) or with CO2 (an atmosphere of 100% CO2 equilibrated with the medium) produced selective junctional blockade: transmission of a 688 and an 817-dalton tracer was generally blocked, while that of a 376-dalton tracer and, in certain conditions, that of a 559-dalton one, persisted. The junctional effect of the ionophore required the presence of Ca in the external medium; and effective junctional blockade by CO2 required pretreatment in medium with high Ca concentration or, interchangeably, pretreatment in medium with high CO2 concentration. In one cell type, prolonged exposure to medium with high Ca concentration alone sufficed to block transmission of the 688-dalton tracer. These effects are discussed in terms of the Ca hypothesis of junctional permeability regulation. In comparison with mammalian (or other vertebrate and invertebrate) organized tissues or with insect cell cultures, the mammalian cell cultures are more resistant to junctional blockade. This difference in transmission stability is discussed in terms of intracellular Ca-buffering capacities of the junctional locales; in particular, in terms of the electron-microscopic finding in the mammalian cultures of fine, bilateral cell processes connected by gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman, K.E.O. 1978. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria.Arch. Biochem. Biophys. 189:256

    Google Scholar 

  • Åkerman, K.E.O., Saris, N.-E.L. 1978. Charge and H+/Ca2+ stoichiometries during Ca2+ influx and efflux in rat liver mitochondria.Frontiers Biol. Energetics 2:1187

    Google Scholar 

  • Azarnia, R., Larsen, W., Loewenstein, W.R. 1974 The membrane junctions in communicating and non-communicating cells, their hybrids and segregants.Proc. Nat. Acad. Sci. 71:880

    Google Scholar 

  • Azarnia, R., Loewenstein, W.R. 1971. Intercellular communication and tissue growth: V. A cancer cell strain that fails to make permeable membrane junctions with normal cells.J. Membrane Biol. 6:368

    Google Scholar 

  • Azarnia, R., Loewenstein, W.R. 1977. Intercellular communication and tissue growth: VIII. A genetic analysis of junctional communication and cancerous growth.J. Membrane Biol. 34:1

    Google Scholar 

  • Baker, P.F. 1972. Transport and metabolism of calcium ions in nerve.Prog. Biophys. Biophys. Chem. 24:177

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Ridgway, E.B. 1971. Depolarization and calcium entry in squid giant axons.J. Physiol. (London) 218:709

    Google Scholar 

  • Baker, P.F., Honerjäger, P. 1978. Influence of carbon dioxide on level of ionized calcium in squid axons.Nature (London) 273:160

    Google Scholar 

  • Baker, P.F., Schlaepfer, W. 1975. Calcium uptake by axoplasm extruded from giant axons ofLoligo. J. Physiol. (London) 249:37P

    Google Scholar 

  • Baux, G., Simonneau, M., Tauc, L., Segundo, J.P. 1978. Uncoupling of electrotonic synapses by calcium.Proc. Nat. Acad. Sci. USA 75:4577

    Google Scholar 

  • Blaustein, M.P., Ratzlaff, R.W., Kendrick, N.K. 1978. The regulation of intracellular calcium in presynaptic nerve terminals.Ann. N.Y. Acad. Sci. 307:195

    Google Scholar 

  • Boron, W.F., DeWeer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors.J. Gen. Physiol. 67:91

    Google Scholar 

  • Brinley, F.J., Tiffert, T., Scarpa, A., Mullins, L. 1977. Intracellular calcium buffering capacity in isolated squid axons.J. Gen. Physiol. 70:355

    Google Scholar 

  • Bruns, D.E., McDonald, J.M., Jarrett, L. 1976. Energy-dependent calcium transport in endoplasmic reticulum.J. Biol. Chem. 251:7191

    Google Scholar 

  • Carvalho, A., Sanui, H., Pace, N. 1963. Calcium and magnesium binding properties of cell membrane material.J. Cell Comp. Physiol. 62:311

    Google Scholar 

  • Chance, B. 1965. The energy linked reaction of calcium with mitochondria.J. Biol. Chem. 240:2728

    Google Scholar 

  • Chiu, R.S., Black, L.M. 1967. Monolayer cultures of insect cell lines and their inoculation with a plant virus.Nature (London) 215:1076

    Google Scholar 

  • Dahl, G., Schudt, C., Gratzl, M. 1978. Fusion of isolated myoblast plasma membranes. An approach to the mechanism.Biochim. Biophys. Acta 514:105

    Google Scholar 

  • Délèze, J., Loewenstein, W.R. 1976. Permeability of a cell junction, during intracellular injection of divalent cations.J. Membrane Biol. 28:71

    Google Scholar 

  • DeMello, W.C. 1975. Effect of intracellular injection of calcium and strontium on cell communication in heart.J. Physiol. (London) 250:231

    Google Scholar 

  • Epstein, M.L., Gilula, N.B. 1977. A study of communication specificity between cells in culture.J. Cell Biol. 75:769

    Google Scholar 

  • Epstein, M.L., Sheridan, J.D., Johnson, R.G. 1977. Formation of low-resistance junctions in vitro in the absence of protein synthesis and ATP production.Exp. Cell Res. 104:25

    Google Scholar 

  • Farquhar, M.G., Palade, G.E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:375

    Google Scholar 

  • Fentiman, I.S., Taylor-Papadimitriou, J., Stoker, M. 1976. Selective contact-dependent cell communication.Nature (London) 264:760

    Google Scholar 

  • Flagg-Newton, J.L., Loewenstein, W.R. 1979. Modulation of junctional mammalian permeability by cell-intrinsic factors.J. Membrane Biol. (in press)

  • Flagg-Newton, J.L., Simpson, I., Loewenstein, W.R. 1979. Permeability of the cell-to-cell membrane channels in mammalian cell junction.Science 205:404

    Google Scholar 

  • Furshpan, E.J., Potter, D.D. 1968. Low resistance junctions between cells in embryos and tissue culture.Curr. Top. Dev. Biol. 3:95

    Google Scholar 

  • Gilula, N.B., Epstein, M.J. 1976. Cell-to-cell communication gap junctions and calcium.1975 Symp. Soc. Exp. Biol. 30:257

    Google Scholar 

  • Hales, C.N., Luzio, J.P., Chandler, J.A., Herman, L. 1974. Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells.J. Cell Sci. 15:1

    Google Scholar 

  • Hasselbach, W. 1974. Sarcoplasmic membrane ATPases.In: The Enzymes. Vol. 10, p. 431. Academic Press, New York

    Google Scholar 

  • Ito, S., Sato, E., Loewenstein, W.R. 1974. Studies on the formation of a permeable cell membrane junction. I. Coupling under various conditions of membrane contact. Colchicine, cytochalasin B, dinitrophenol.J. Membrane Biol. 19:305

    Google Scholar 

  • Jacobs, M.H. 1920. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide.Am. J. Physiol. 53:457

    Google Scholar 

  • Katchalsky, A. 1964.In: Connective Tissue, Intercellular Macromolecules. New York Heart Association, editors. p. 9. Little Brown, Boston

    Google Scholar 

  • Larsen, W.J., Azarnia, R., Loewenstein, W.R. 1977. Intercellular communication and tissue growth. IX. Junctional membrane structure of hybrids between communication-competent and communication-incompetent cells.J. Membrane Biol. 34:39

    Google Scholar 

  • Lawrence, T.S., Ginzberg, R.D., Gilula, N.B., Beers, W.H. 1979. Hormonally induced shape changes in cultured rat ovaries granulosc cells.J. Cell Biol. 80:21

    Google Scholar 

  • Lea, T.J., Ashley, C.C. 1978. Increase in free Ca2+ in muscle after exposure to CO2.Nature (London) 275:236

    Google Scholar 

  • Lehninger, A.L. 1970. Mitochondria and calcium transport.Biochem. J. 119:129

    Google Scholar 

  • Lehninger, A.L., Carafoli, E., Rossi, C.J. 1967. Energy-linked ion movements in mitochondrial systems.Adv. Enzymol. 29:259

    Google Scholar 

  • Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441

    Google Scholar 

  • Loewenstein, W.R. 1967. On the genesis of cellular communication.Dev. Biol. 15:503

    Google Scholar 

  • Loewenstein, W.R. 1975. Permeable junctions.Cold Spring Harbor Symp. Quant. Biol. 40:49

    Google Scholar 

  • Loewenstein, W.R. 1979a. Junctional intercellular communication and the control of growth.Biochim. Biophys. Acta Cancer Rev. 560:1

    Google Scholar 

  • Loewenstein, W.R. 1979b. Intercellular communication. The cell-to-cell membrane channel.Physiol. Rev. (in press)

  • Loewenstein, W.R., Kanno, Y., Socolar, S.J. 1978a. Quantum jumps of conductance during formation of membrane channels at cell-cell junction.Nature (London) 274:133

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y., Socolar, S.J. 1978b. The cell-to-cell channel.Fed. Proc. Symp. 37:89

    Google Scholar 

  • Loewenstein, W.R., Nakas, M., Socolar, S.J. 1967. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction.J. Gen. Physiol. 50:1865

    Google Scholar 

  • Loewenstein, W.R., Rose, B. 1978. Calcium in (junctional) intercellular communication and a thought on its behavior in intracellular communication.Ann. N.Y. Acad. Sci. 307:285

    Google Scholar 

  • Maroudas, N.G. 1974. Short range diffusion gradients. Appendix.Cell 3:217

    Google Scholar 

  • Meech, R.W., Thomas, R.C. 1977. The effect of calcium injection on the intracellular sodium and pH of snail neurones.J. Physiol. (London) 265:867

    Google Scholar 

  • Moore, L., Fitzpatrick, D.F., Chen, T.S., Landon, E.J. 1974. Calcium pump activity of the renal plasma membrane and renal microsomes.Biochim. Biophys. Acta 345:405

    Google Scholar 

  • Moore, L., Pastan, I. 1977. Energy-dependent calcium uptake. Activity in cultured fibroblast microsomes. Regulation of the uptake system by cell density.J. Biol. Chem. 252:6304

    Google Scholar 

  • Moore, L., Pastan, I. 1978. Energy dependent calcium uptake by fibroblast microsomes.Ann. N.Y. Acad. Sci. 307:177

    Google Scholar 

  • Oliveira-Castro, G.M., Loewenstein, W.R. 1971. Junctional membrane permeability: Effects of divalent cations.J. Membrane Biol. 5:51

    Google Scholar 

  • Pauli, B.V., Weinstein, R., Soble, L.W., Alroy, J. 1977. Freeze-fracture of monolayer cultures.J. Cell Biol. 72:763

    Google Scholar 

  • Peracchia, C., Dulhunty, A. 1976. Low resistance junctions in crayfish. Structural changes with functional uncoupling.J. Cell Biol. 70:419

    Google Scholar 

  • Pitts, J.D. 1977. Direct communication between animal cells.In: International Cell Biology 1976–1977. B.R. Brinkley and K.R. Porter, editors. p. 43. Rockefeller University Press, New York

    Google Scholar 

  • Poisner, A.M., Hava, M. 1970. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. IV. Adenosine triphosphate-activated uptake of calcium by microsomes and mitochondria.Mol. Pharmacol. 6:407

    Google Scholar 

  • Politoff, A.L., Socolar, S.J., Loewenstein, W.R. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism.J. Gen. Physiol. 53:498

    Google Scholar 

  • Requena, J., DiPolo, R., Brinley, F.J., Jr., Mullins, L.J. 1977. The control of ionized calcium in squid axons.J. Gen. Physiol. 70:329

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1971. Junctional membrane permeability. Depression by substitution of Li for extracellular Na, and by long-term lack of Ca and Mg; restoration by cell repolarization.J. Membrane Biol. 5:20

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1975a. Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in the cytosol is restricted due to energized sequestering.Science 190:1204

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1975b. Permeability of cell junction depends on local cytoplasmic calcium activity.Nature (London) 254:250

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1976. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin.J. Membrane Biol. 28:87

    Google Scholar 

  • Rose, B., Rick, R. 1978. Intracellular pH, intracellular free Ca, and junctional cell-cell coupling.J. Membrane Biol. 44:377

    Google Scholar 

  • Rose, B., Simpson, I., Loewenstein, W.R. 1977. Calcium ion produces graded changes in permeability of membrane channels in cell junction.Nature (London) 267:625

    Google Scholar 

  • Simpson, I., Rose, B., Loewenstein, W.R. 1977. Size limit of molecules permeating the junctional membrane channels.Science 195:294

    Google Scholar 

  • Socolar, S.J. 1977. Appendix: The coupling coefficient as an index of junctional conductance.J. Membrane Biol. 34:29

    Google Scholar 

  • Socolar, S.J., Loewenstein, W.R. 1979. Methods for studying transmission through permeable cell-to-cell junctions.In: Methods in Membrane Biology E. Korn, editor. Vol. 10, p. 123. Plenum, New York

    Google Scholar 

  • Spray, D.C., Harris, A.L., Bennett, M.V.L. 1979. Intracellular pH controls conductance of embryonic gap junctions.Biophys. J. 25:81a

    Google Scholar 

  • Staehelin, L.A. 1974. Structure and functions of intercellular junctions.Int. Rev. Cytol. 39:191

    Google Scholar 

  • Stoker, M.G.P. 1973. Role of diffusion boundary layer in contact inhibition of growth.Nature (London) 246:200

    Google Scholar 

  • Thomas, R. 1976. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurons.J. Physiol. (London) 255:715

    Google Scholar 

  • Turin, L., Warner, A. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo.Nature (London) 270:56

    Google Scholar 

  • Vogt, M., Dulbecco, R. 1960. Virus-cell interaction with a tumor-producing virus.Proc. Nat. Acad. Sci. USA 46:365

    Google Scholar 

  • Wasserman, R.H., Corradino, R.A. 1973. Vitamin D, calcium, and protein synthesis.Vitam. Horm. 32:43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flagg-Newton, J., Loewenstein, W.R. Experimental depression of junctional membrane permeability in mammalian cell culture. A study with tracer molecules in the 300 to 800 dalton range. J. Membrain Biol. 50, 65–100 (1979). https://doi.org/10.1007/BF01868788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868788

Keywords

Navigation