Skip to main content
Log in

Electrolyte permeability and electromotive action of mosaic membranes composed of porous and liquid parts of high ionic selectivity for ions of opposite signs

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A theory is presented of the electromotive and ion permeability properties of membranes which consist of a mosaic of highly ion selectiveporous membrane areas of ion exchanger nature and of areas of highly ion selectiveliquid ion exchanger membranes, the two types of areas being exclusively permeable to ions of opposite sign. It is demonstrated that, with properly chosen membranes, the preferential permeability of such porous-liquid mosaic membranes for ions of one sign of charge will be the opposite of that apparently indicated by their electromotive action.

The theory is based on the fact that the movement of ions across the porous membranes occurs in the dissociated state and in most instances is quantitatively linked to the resistance according to the Nernst-Einstein equation. The penetration of ions across liquid ion exchanger membranes, however, takes place essentially in a nondissociated state, and, as determined by self-exchange studies with radioactive tracers and stirred membranes, occurs at rates far in excess of those across porous membranes of the same resistance.

For the theoretical treatment the simplest case, two-membrane macro-model concentration cells, is discussed in detail. Qualitatively, it is evident that the ratio of the permeability of anions and cations across such porous-liquid mosaic membranes ordinarily will be strongly in favor of the ions which penetrate across its liquid parts; contrariwise, the electromotive actions of the mosaic membranes ordinarily are dominated by its porous parts.

Electric currents flow through all mosaic membranes; the strenghth of the current in a model cell may be calculated from the concentration potentials arising separately across the two membranes, and the resistances of the membranes and of the two solutions. From the strength of the current, the sign and the magnitude of the concentration potential arising in the model cell may be computed; in many instances it should closely approach the concentration potential across the porous membrane.

For the test of this theory with two-membrane macro-mosaic models, the electrolyte of choice for experimental reasons was RbSCN, tagged with86Rb+ and S14CN. The porous membranes were polystyrene sulfonic acid collodion matrix membranes; the liquid membranes consisted of 0.02m trioctyl propyl ammonium thiocyanate in 1-decanol. The ratios of the permeabilities across the model mosaic membranes determined by conventional rate of self-exchange measurements showed, as expected, that the permeability of the SCN ions is larger, up to 3600 times larger, than that of the Rb+ ions. The potentials arising in these models agreed within the limits of experimental error with those predicted by theory, closely approaching that arising at the cation selective porous membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botrè, C., Scibona, G. 1962. Osservazioni sul comportamento elettrochimico di soluzioni organiche di sali di trialchilammine alifatiche.Ann. Chim. (Rome) 52: 1199

    Google Scholar 

  2. Carr, C.W., Sollner, K. 1944. The structure of the collodion membrane and its electrical behavior XI. The preparation and properties of “megapermselective” collodion membranes combining extreme ionic selectivity with high permeability.J. Gen. Physiol. 28:119

    Google Scholar 

  3. Carr, C.W., Sollner, K. 1964. Auxiliary electrodes in mosaic membrane systems: Porosity mosaics.Nature (London) 204:878

    Google Scholar 

  4. Carr, C.W., Sollner, K. 1964. The electroosmotic effects arising from the interaction of the selectively anion and selectivity cation permeable parts of mosaic membranes.Biophys. J. 4:189

    Google Scholar 

  5. Carr, C.W., Gregor, H.P., Sollner, K. 1945. The structure of the collodion membrane and its electrical behavior. XII. The preparation membranes combining high ion selectivity with high permeability.J. Gen. Physiol. 28:179

    Google Scholar 

  6. Gottlieb, M., Sollner, K. 1968. Failure of the Nernst-Einstein equation to correlate electrical resistance and rates of ionic self-exchange across certain fixed charge membranes.Biophys. J. 8:515

    PubMed  Google Scholar 

  7. Graham, T. 1854. On osmotic force.Phil. Trans. R. Soc. (London) 114: 177

    Google Scholar 

  8. Gregor, H.P., Sollner, K. 1946. Improved methods of preparation of “permselective” collodion membranes combining extreme ionic selectivity with high permeability. J. Phys. Chem.50:53; Improved methods of preparation of electropositive “permselective” protamine collodion membranes.Ibid. J. Phys. Chem. 50:88

    Google Scholar 

  9. 9.Grollman, A., Sollner, K. 1932. Experimental verification of a new theory concerning the mechanism of anomalous osmosis.Trans. Electrochem. Soc. 61:487

    Google Scholar 

  10. Haber, F., Klemensiewicz, Z. 1909. Über elektrische Phasengrenzkräfte.Z. Phys. Chem. 67:385

    Google Scholar 

  11. Helfferich, F. 1962. Ion exchange, p. 339. McGraw-Hill, New York

    Google Scholar 

  12. Höber, R. 1902. Physikalische Chemie der Zelle und der Gewebe; (6th Ed. 1926) W. Engelmann, Leipzig.

    Google Scholar 

  13. Höber, R., Hitchcock, D.I., Bateman, T.B., Goddard, D.R., Fenn, W.D. 1945. Physical Chemistry of Cells and Tissues. Blakiston, Philadelphia

    Google Scholar 

  14. Höber, R., Hoffmann, F. 1928. Über das elektromotorische Verhalten von künstlichen Membranen mit gleichzeitig selektiv kationen- und selektiv anionendurchlässigen Flächenstücken.Pfluegers Arch. Gesamte Physiol. Menschen Tiere. 220:558

    Google Scholar 

  15. Katchalsky, A., Curran, P.F. 1965. Nonequilibrium thermodynamics in biophysics. p. 133. Harvard University Press, Cambridge

    Google Scholar 

  16. Loeb, J. 1922. Proteins and the theory of collodial behavior. McGraw-Hill, New York

    Google Scholar 

  17. Meyer, K.H., Hauptmann, H., Sievers, J.-F. 1936. La perméabilité des membranes III. La perméabilité ionique de couches liquides non-aqueuses.Helv. Chim. Acta 19:948

    Google Scholar 

  18. Meyer, K.H., Sievers, J.-F. 1936. La perméabilité des membranes. I. Théorie de la perméabilité ionique.Helv. Chim. Acta 19:649. II. Essais avec des membranes sélectives artificielles.Ibid. J. Phys. Chem. 19:665

    Google Scholar 

  19. Neihof, R. 1954. The preparation and properties of strong acid type collodion-base membranes.J. Phys. Chem. 58:916

    Google Scholar 

  20. Neihof, R., Sollner, K. 1950. A quantitative electrochemical theory of the electrolyte permeability of mosaic membranes composed of selectively anion-permeable and selectively cationpermeable parts and its experimental verification. I. An outline of the theory and its quantitative test in model systems with auxiliary electrodes.J. Phys. Colloid. Chem. 54:157

    Google Scholar 

  21. Neihof, R., Sollner, K. 1955. A quantitative electrochemical theory of the electrolyte permeability of mosaic membranes composed of selectively anion-permeable and selectively cationpermeable parts, and its experimental verification. II. A quantitative test of the theory in model systems which do not involve the use of auxiliary electrodes.J. Gen. Physiol. 33:613

    Google Scholar 

  22. Nernst, W. 1888. Zur Kinetik der in Lösung befindlichen Körper.Z. Phys. Chem. 2:613; 1889.Die elektromotorische Wirksamkeit der Ionen.Ibid. Z. Phys. Chem..4:129

    Google Scholar 

  23. Robinson, R.A., Stokes, R.H. 1955. Electrolyte Solutions. p. 293. Academic Press, New York

    Google Scholar 

  24. Shean, G.M., Sollner, K. 1966. Carrier mechanisms in the movement of ions across porous and liquid ion exchanger membranes.Ann. N.Y. Acad. Sci. 137:759

    PubMed  Google Scholar 

  25. Sollner, K. 1930. Zur Erklärung der abnormen Osmose an nicht quellbaren Membranen.Z. Elektrochem. 36:36, 234

    Google Scholar 

  26. Sollner, K. 1932. Über Mosaikmembranen.Biochem. Z. 244:370

    Google Scholar 

  27. Sollner, K. 1970. The basic electrochemistry of liquid membranes.In: Diffusion Processes, Proceedings of the Thomas Graham Memorial Symp., University of Strathclyde, Glasgow, Scotland 1969. Vol. II. G.N. Sherwood, editor. pp. 655–730. Gordon & Breach, London-New York-Paris

    Google Scholar 

  28. Sollner, K. 1976. The use of models in the study of complex effects at mosaic membranes.Pontif. Acad. Sci. Scripta Varia 40:759

    Google Scholar 

  29. Sollner, K., Grollman, A. 1932. Zur Erklärung der abnormen Osmose an nicht quellbaren Membranen (Part III).Z. Elektrochem. 38:274

    Google Scholar 

  30. Sollner, K., Neihof, R. 1951. Strong-acid type of permselective membrane.Arch. Biochem. Biophys. 33:166

    Google Scholar 

  31. Sollner, K., Shean, G.M. 1964. Liquid ion-exchange membranes of extreme selectivity and high permeability for anions.J. Am. Chem. Soc. 86:1901; 1967. Liquid ion exchange membranes of extreme ionic selectivity and high transmissivity.Protoplasma 63:174

    Google Scholar 

  32. Teorell, T. 1935. An attempt to formulate a quantitative theory of membrane permeability.Proc. Soc. Exp. Biol. and Med. 33:282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sollner, K., Shean, G.M. Electrolyte permeability and electromotive action of mosaic membranes composed of porous and liquid parts of high ionic selectivity for ions of opposite signs. J. Membrain Biol. 53, 159–170 (1980). https://doi.org/10.1007/BF01868821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868821

Keywords

Navigation