Skip to main content
Log in

Intracellular ionic activities in frog skin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular Na+, K+, and Cl activities (a iNa ,a iK ,a iCl ) and transapical membrane potentials (V o) were measured with liquid ion-exchanger and open-tip microelectrodes in isolated short-circuited frog skins (R. pipiens) incubated at 23°C in normal amphibian Ringer's solution. Under control conditionsa iNa =14±3mm,a iK =132±10mm anda iCl =18±3mm (sd). The value ofa iCl is 4.4 times the value corresponding to electrochemical equilibrium for this ion. Thus, Cl is actively accumulated by epithelial cells of the frog skin. Shortly after addition of amiloride (2–5 μm) to the apical bathing medium,a iK ,a iNa , anda iCl were essentially unchanged althoughV o had hyperpolarized by about 30–40 mV. During long-term exposure to amiloridea iK anda iCl did not change significantly,V o depolarized by about 16 mV from the maximal value anda iNa decreased to 8±3mm. Immediately after exposure to amiloride the transmembrane driving force for Na+ increased from 124 to 154 mV. During further exposure to amiloride, despite changes in bothV o anda iNa , this driving force remained virtually constant. SinceI sc during this period was close to zero, it is suggested that the observed driving force for Na+ under these conditions approximates the maximal driving force generated by the Na+−K+ ATP-ase pump in the basolateral cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of the frog skin.J. Physiol. 212:195–210

    PubMed  Google Scholar 

  2. Alvarado, R.H., Dietz, T.H., Mullen, T.L. 1975. Chloride transport across isolated skin ofRana pipiens.Am. J. Physiol. 229:869–876

    PubMed  Google Scholar 

  3. Armstrong, W.McD., Bixenman, W.R., Frey, K.F., Garcia-Diaz, J.F., O'Regan, M.G., Owens, J.L. 1979. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine.Biochim. Biophys. Acta 551:207–219

    PubMed  Google Scholar 

  4. Biber, T.U.L., Walker, T.C., Mullen, T.L. 1980. Influence of extracellular Cl concentration on Cl transport across isolated skin ofRana pipiens.J. Membrane Biol. 54:191–202

    Article  Google Scholar 

  5. Civan, M.M. 1980. Potassium activities in epithelia.Fed. Proc. 39:2865–2870

    PubMed  Google Scholar 

  6. DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Article  Google Scholar 

  7. DeLong, J., Civan, M.M. 1979. Ionic activities in toad urinary bladder.Colloq. Inst. Natl. Santé Rech. Med. 85:221–229

    Google Scholar 

  8. Fisher, R.S., Helman, S.I. 1978. Voltage sensitivity of the inner barrier of frog skin to changes of extracellular K.Biophys. J. 21:169a

    Google Scholar 

  9. Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    PubMed  Google Scholar 

  10. Fuchs, W., Hviid-Larsen, E., Lindemann, B. 1977. Currentvoltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. 267:137–166

    PubMed  Google Scholar 

  11. Garcia-Diaz, J.F., Armstrong, W.McD. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder.J. Membrane Biol. 55:213–222

    Article  Google Scholar 

  12. Garcia-Diaz, J.F., Armstrong, W.McD. 1980. Intracellular K+ activity inNecturus urinary bladder.Physiologist 23:63

    PubMed  Google Scholar 

  13. Helman, S.J., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    Article  PubMed  Google Scholar 

  14. Helman, S.J., O'Neil, R.J., Fisher, R.S. 1975. Determination of theE Na of frog skin from studies of its current-voltage relationship.Am. J. Physiol. 229:947–951

    PubMed  Google Scholar 

  15. Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Article  Google Scholar 

  16. Kimura, G., Fujimoto, M. 1977. Estimation of the physical state of potassium in frog bladder cells by ion exchanger microelectrode.Jpn J. Physiol. 27:291–303

    PubMed  Google Scholar 

  17. Kimura, G., Urakabe, S., Yuasa, S., Miki, S., Takamitsu, Y., Orita, Y., Abe, H. 1977. Potassium activity and plasma membrane potentials in epithelial cells of toad bladder.Am. J. Physiol. 232:F196-F200

    PubMed  Google Scholar 

  18. Lev, A.A., Armstrong, W.McD. 1975. Ionic activities in cells.In: Current Topics in Membranes and Transport. A. Kleinzeller and F. Bronner, editors. Vol. 6, pp. 59–123. Academic Press, New York

    Google Scholar 

  19. Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1161–1164

    PubMed  Google Scholar 

  20. Morel, F., Leblanc, G. 1975. Transient current changes and Na compartimentalization in frog skin epithelium.Pfluegers Arch. 358:135–157

    Article  Google Scholar 

  21. Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135–143

    Article  Google Scholar 

  22. Nagel, W. 1977. Effect of high [K] upon the frog skin intracellular potentials.Pfluegers Arch. 368:R22

    Google Scholar 

  23. Nagel, W. 1978. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin.J. Membrane Biol. 42:99–122

    Article  Google Scholar 

  24. Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    PubMed  Google Scholar 

  25. Nelson, D.I., Ehrenfeld, I., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91–119

    Google Scholar 

  26. Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial transport compartment.J. Membrane Biol. 39:313–331

    Article  Google Scholar 

  27. White, J.F. 1977. Activity of chloride in absorptive cells ofAmphiuma small intestine.Am. J. Physiol. 232:E553-E559

    PubMed  Google Scholar 

  28. Wolff, D., Essig, A. 1980. Protocol-dependence of equivalent circuit parameters of toad urinary bladder.J. Membrane Biol. 55:53–68

    Article  Google Scholar 

  29. Zadunaisky, J.A. 1979. Characteristics of chloride secretion in some non-intestinal epithelia.In: Mechanisms of Intestinal Secretion. H.J. Binder, editor, pp. 53–64. A.R. Liss. New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, W., Garcia-Diaz, J.F. & Armstrong, W.M. Intracellular ionic activities in frog skin. J. Membrain Biol. 61, 127–134 (1981). https://doi.org/10.1007/BF02007639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02007639

Key words

Navigation