Skip to main content
Log in

Pressure and temperature effects on human red cell cation transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of hydrostatic pressure and temperature on the three components of K+ uptake in human red cells have been investigated, using ouabain and bumetanide to distinguish between the pump, passive diffusion and cotransport. The pressure sensitivity for passive diffusion has been shown to depend on the counter-ion present. The order of this effect, Cl>Br>NO 3 >I, is the same as for the ionic partial modal volumes and the Hofmeister series. We have analyzed our experimental results thermodynamically, and propose a model for the activated transition-state complex of the potassium ion which involves the loss of water molecules from the secondary hydration shell, cosphere II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aveyard, R., Haydon, D.A. 1973. An introduction to the principles of surface chemistry. Cambridge University Press, Cambridge, p. 111

    Google Scholar 

  • Bockris, J.O'M. 1949. Ionic solvation.Q. Rev. 3:173–180

    Google Scholar 

  • Catton, W.T. 1957. Physical Methods in Physiology. Pitman, London

    Google Scholar 

  • Davson, H. 1940. The influence of the lyotropic series of anions on cation permeability.Biochem. J. 34:917–925

    Google Scholar 

  • Dixon, M., Webb, E.C. 1965. Enzymes. Longmans, London

    Google Scholar 

  • Dreizen, P., Kim, H.D. 1971. Contractile proteins of a benthic fish. I. Effects of temperature and pressure.Am. Zool. 11:513–521

    Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1980. Stimulation of the Na/K pump by trypsin in erythrocytes of LK goats.J. Physiol. (London) 301:25–38

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    Google Scholar 

  • Franks, F. 1973. Water. Vol. 3. Plenum Press, New York & London

    Google Scholar 

  • Friedman, H.L., Krishnan, C.V. 1973. Thermodynamics of ionic hydration.In: Water. F. Franks, editor. Vol. 3, Ch. 1, p. 1. Plenum Press, New York & London

    Google Scholar 

  • Funder, J., Wieth, J.O. 1967. Effects of some monovalent anions on fluxes of Na+ and K+ and on glucose metabolism of ouabain treated human red cells.Acta Physiol. Scand. 71:168–185

    Google Scholar 

  • Glynn, I.M. 1956. Sodium and potassium movements in human red cells.J. Physiol. (London) 134:278–310

    Google Scholar 

  • Glynn, I.M. 1957. The ionic permeability of the red cell membrane.Prog. Biophys. Biophys. Chem. 8:241–307

    Google Scholar 

  • Goldinger, J.M., Kang, B.S., Choo, Y.E., Paganelli, C.V., Hong, S.K. 1980. Effect of hydrostatic pressure on ion transport and metabolism in human erythrocytes.J. Appl. Physiol. 49:224–231

    Google Scholar 

  • Hochachka, P.W., Somero, G.N. 1973. The basic effects of pressure on biological systems.In: Strategies of Biochemical Adaptation. Ch. 8, p. 271. P.W. Hochachka and G.N. Somero, editors. W.B. Saunders, Philadelphia

    Google Scholar 

  • Hofmeister, F. 1888. Zur Lehre von der Wirkung der Salze.Arch. Exp. Pathol. Pharmakol. 24:247–260;also (1889)25:1–30; (1890)27:395–413; (1891)28:210–238

    Google Scholar 

  • Johnson, F.H., Eyring, H., Stover, B.J. 1974. The Theory of Rate Processes in Biology and Medicine. John Wiley & Sons, New York & London

    Google Scholar 

  • Kavanau, J.L. 1965. Structure and Function in Biological Membranes. Vol. I, p. 229. Holden-Day Inc., San Francisco

    Google Scholar 

  • Kim, H.D., Dreizen, P. 1971 Contractile proteins of a benthic fish. II. Composition and ATPase properties of actomyosin.Am. Zool. 11:523–529

    Google Scholar 

  • Knauf, P., Rothstein, A. 1971. Chemical modification of membranes. Effects of sulphydryl and amino reactive agents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    Google Scholar 

  • Lakshminarayanaiah, N. 1969. Transport Phenomena in Membranes. Ch. 6, p. 300. Academic Press, New York & London

    Google Scholar 

  • Macdonald, A.G. 1975. Physiological aspects of deep sea biology.In: Monographs of the Physiological Society, No. 31. Cambridge University Press, Cambridge

    Google Scholar 

  • Mullins, L.J. 1959. The penetration of some cations into muscle.J. Gen. Physiol. 42:817–829

    Google Scholar 

  • Podolsky, R.J. 1956. A mechanism for the effect of hydrostatic pressure on biological systems.J. Physiol. (London) 132:33P-39P

    Google Scholar 

  • Roberts, D.V. 1977. Enzyme Kinetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Samoilov, O.Ya. 1957a. A new approach to the study of hydration of ions in aqueous solutions.Discuss. Faraday Soc. 24:141–146, 216

    Google Scholar 

  • Samoilov, O.Ya. 1957b. Structure of Aqueous Electrolyte Solutions and Ion Hydration. Izd. A.N.S.S.S.R., Moscow

    Google Scholar 

  • Samoilov, O.Ya. 1961. Die Struktur von wässrigen Elektrolytlösungen. B.G. Teubner, Leipzig

    Google Scholar 

  • Schatzmann, H.J. 1953. Herzglykoside als Hemmstoffe für den Aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran.Helv.Physiol. Pharmacol. Acta 11:346–354

    Google Scholar 

  • Shrivastav, B.B., Parmentier, J.L. 1980. Hydrostatic pressure as a tool in electrophysiology.In: Molecular Mechanisms of Anesthesia, Progress in Anesthesiology. B.R. Fink, editors. Vol. 2, p. 297. Raven Press, New York

    Google Scholar 

  • Stewart, G.W., Ellory, J.C., Klein, R.A. 1980. Increased human red cell cation passive permeability below 12°C.Nature (London) 286:403–404

    Google Scholar 

  • Thorne, P.C.L., Roberts, E.R. 1954. Inorganic Chemistry. (6th ed.) pp. 36–37, 789. Oliver & Boyd, London-Edinburgh

    Google Scholar 

  • Verrall, R.E. 1973. Infrared spectroscopy of aqueous electrolyte solutions.In: Water. F. Franks, editor. Vol. 3, Ch. 5, p. 211. Plenum Press, New York & London

    Google Scholar 

  • Wieth, J.O. 1972. The selective ionic permeability of the red cell membrane.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 265. Alfred Benzon Symposium IV, Munksgaard, Copenhagen

    Google Scholar 

  • Wiley, J.S. 1977. Genetic abnormalities of cation transport in the human erythrocyte.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 337–361. Academic Press, New York

    Google Scholar 

  • Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755

    Google Scholar 

  • Wiley, J.S., Ellory, J.C., Shuman, M.A., Shaller, C.C., Cooper, R.A. 1975. Characteristics of the membrane defect in the hereditary stomatocytosis syndrome.Blood 46:337–356

    Google Scholar 

  • Willis, J.S., Ellory, J.C., Becker, J.H. 1978. Na−K pump and Na−K-ATPase: Disparity of their temperature sensitivity.Am. J. Physiol. 235:c159-c167

    Google Scholar 

  • Zimmermann, U., Pilwat, G., Péqueux, A., Gilles, R. 1980. Electromechanical properties of human erythrocyte membranes: The pressure-dependence of potassium permeability.J. Membrane Biol. 54:103–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A.C., Ellory, J.C. & Klein, R.A. Pressure and temperature effects on human red cell cation transport. J. Membrain Biol. 68, 47–56 (1982). https://doi.org/10.1007/BF01872253

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872253

Key words

Navigation