Skip to main content
Log in

Properties of lipid bilayer membranes separating two aqueous phases: The effects of Fe+3 on electrical properties

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ferric ion has been found to alter the electrical properties of lecithincholesterol-decane bilayer membranes. Within minutes after the addition of microgram quantities of FeCl3 to the ambient aqueous phase, the resistance of the membrane falls by a factor of 105 to 106. No change in capacitance is observed. The resistance change is obtained with membranes made from synthetic lecithin (fully saturated fatty acids) as well as by those formed from egg lecithin. The conductance of the modified membrane exhibits both time and voltage dependent behavior; the time dependence of the current is similar to that of an inductance, and the voltage dependence of the current is exponential. Concomitant with the resistance change, the modified membrane becomes permselective, passing chloride almost to the complete exclusion of sodium. Anion selectivity can be converted to cation selectivity by the subsequent addition of certain chelating agents. Area-conductance measurements show the resistance change occurs in the thin film. The addition of a reducing agent causes the effect of the ferric ion to be reversed, and the conductance returns to that characteristic of unmodified membranes. When ferric ion is added to only one side of the membrane, the system rectifies with current ratios of up to 20∶1. It is concluded that the alteration of membrane properties owes its origin to the hydrolysis of membrane-bound ferric ion. The interaction of ferric ion with aqueous dispersions of lecithin has been investigated by several techniques, and evidence is presented that the dispersions bind charged species of iron and that this charge diminishes under conditions where iron hydrolysis occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberty, R. A., Marvin, H. H. 1950. Protein-ion interaction by the moving boundary method. Theory of the method.J. Phys. Chem. 54:47.

    Google Scholar 

  • Atkinson, G.F., McBryde, W.A.E. 1961. Graphical representation of hydrolysis of the ferric ion.J. Chem. Ed. 38:127.

    Google Scholar 

  • Bangham, A.D. 1963. Physical structure and behavior of lipids and lipid enzymes.In: Advances in Lipid Research. R. Paoletti and D. Kritchevsky, editors. Vol. 1, p. 65. Academic Press Inc., New York.

    Google Scholar 

  • Barfort, P., Arquilla, E.R., Vogelhut, P.O. 1968. Resistance changes in lipid bilayers: Immunological applications.Science 160:1119.

    PubMed  Google Scholar 

  • Bligh, E.G., Dwyer, W.J. 1957. A rapid method of total lipid extraction and purification.Canad. J. Biochem. Physiol. 37:911.

    Google Scholar 

  • Cash, W.D., Grady, M. 1965. Role of metal contaminants in the mitochondrial swelling activities of reduced and oxidized glutathione preparations.J. Biol. Chem. 240:PC 3450.

    Google Scholar 

  • Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765.

    Google Scholar 

  • Cerletti, P., Giovenco, M.A., Giordano, M.G., Giovenco, S., Strom, R. 1967. Succina dehydrogenase I. Role of phospholipids.Biochim. Biophys. Acta 146:380.

    PubMed  Google Scholar 

  • Colburn, R.W., Mass, J.W. 1965. Adenosine Triphosphate-metal-norepinephrine ternary complexes and catecholamine binding.Nature 208:37.

    PubMed  Google Scholar 

  • Cole, K.S. 1955. Ions, potentials, and the nerve impulse.In: Electrochemistry in Biology and Medicine. T. Shedlovsky, editor. p. 134. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Davies, J.T., Rideal, E.K. 1963. Interfacial Phenomena. p. 183. Academic Press Inc., New York.

    Google Scholar 

  • Davson, H., Danielli, J.F. 1952. The Permeability of Natural Membranes. 2nd. Ed. Cambridge University Press, England.

    Google Scholar 

  • Del Castillo, J., Rodriguez, A., Romero, C.A., Sanchez, V. 1966. Lipid films as transducers for detection of antigen-antibody and enzyme substrate reactions.Science 153:185.

    PubMed  Google Scholar 

  • Freygang, W.H., Adrian, R.H. 1961. Potassium movement in muscle membrane.In: Biophysics of Physiological and Pharmacological Actions. A.M. Shanes, editor. p. 245. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Hanai, T., Haydon, D.A. 1966. Permeability to water of bimolecular lipid membranes.J. Theoret. Biol. 11:370.

    Google Scholar 

  • Hanai, T., Haydon, D.A., Redwood, W.R. 1966. The water permeability of artificial bimolecular leaflets: a comparison of radiotracer and osmotic methods.Ann. N.Y. Acad. Sci. 137:731.

    PubMed  Google Scholar 

  • Hanai, T., Haydon, D.A., Taylor, J. 1964. An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions.Proc. Roy. Soc. (London)A 281:377.

    Google Scholar 

  • Hanai, T., Haydon, D.A., Taylor, J. 1965a. Polar group orientation and the electrical properties of lecithin bimolecular leaflets.J. Theoret. Biol. 9:278.

    Google Scholar 

  • Hanai, T., Haydon, D.A., Taylor, J. 1965b. The variation of capacitance and conductance of bimolecular lipid membranes with urea.J. Theoret. Biol. 9:433.

    Google Scholar 

  • Harris, E.J. 1967. Fall Seminar Series. Department of Biochemistry, University of Virginia.

  • Henn, F.A., Decker, G., Greenawalt, J., Thompson, T.E. 1967. Properties of lipid bilayer membranes separating two aqueous phases: Electron microscope studies.J. Mol. Biol. 24:51.

    Google Scholar 

  • Hodgkin, A.L. 1951. The ionic basis of electrical activity in nerve and muscle.Biol. Rev. 26:339.

    Google Scholar 

  • Holman, R.T. 1954. Autoxidation of fats and related substances.In: Progress in the Chemistry of Fats & Other Lipids. R.T. Holman, W.O. Lundberg, T. Malkin, editors. Vol. II, p. 60. Academic Press Inc., New York.

    Google Scholar 

  • Hopfer, U., Lehninger, A.L., Thompson, T.E. 1968. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation.Proc. Nat. Acad. Sci. 59:484.

    PubMed  Google Scholar 

  • Huang, C., Thompson, T.E. 1965. Properties of lipid bilayer membranes separating two aqueous phases: Determination of membrane thickness.J. Mol. Biol. 13:183.

    PubMed  Google Scholar 

  • Huang, C., Thompson, T.E. 1966. Properties of lipid bilayer membranes separating two aqueous phases: Water permeability.J. Mol. Biol. 15:539.

    PubMed  Google Scholar 

  • Huang, C., Wheeldon, L., Thompson, T.E. 1964. Properties of lipid bilayer membranes separating two aqueous phases: Formation of a membrane of simple composition.J. Mol. Biol. 8:148.

    Google Scholar 

  • Katz, B. 1949. Les constantes electriques dela membrane du muscle.Arch. Sci. Physiol. 3:285.

    Google Scholar 

  • Korn, E.D. 1966. Structure of biological membranes: The unit membrane theory is reevaluated in light of the data now available.Science 153:1991.

    Google Scholar 

  • Kraus, K.A., Phillips, H.D., Carlson, T.A., Johnson, J.S. 1958. Ion exchange properties of hydrous oxides.Proc. 2nd Int. Conf. Peaceful Uses of Atomic Energy, United Nations, Geneva28:3.

    Google Scholar 

  • Lev, A.A., Buzinsky, E.P. 1967. Cation specificity of model bimolecular phospholipid membranes with incorporated valinomycin.Cytology 9:1.

    Google Scholar 

  • Liberman, F.A., Topaly, V.P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.

    PubMed  Google Scholar 

  • Litmann, B.J.Personal communication.

  • MacDonald, R. 1967. Resistance and capacitance of lipid bilayer membranes.Fed. Proc. 26:867.

    Google Scholar 

  • MacInnes, D.A. 1961. The Principles of Electrochemistry. p. 225. Reinhold, New York.

    Google Scholar 

  • Miyamoto, V., Thompson, T.E. 1967. Some electrical properties of lipid membranes.J. Colloid. Interface Sci. 25:16.

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K−Na discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochim. Biophys. Res. Commun. 26:398.

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1968. Action potentials induced in bimolecular lipid membranes.Nature 217:713.

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D.O., Tien, H.T., Westcott, W.C. 1962. Reconstitution of excitable membrane structurein vitro.Circulation 26:1167.

    Google Scholar 

  • Mueller, P., Rudin, D.O., Tien, H.T., Westcott, W.C. 1964. Formation and properties of bimolecular lipid membranes.In: Recent Progress in Surface Science. J.F. Danielli, A.C. Riddiford, editors. Vol. I, Ch. 2. Academic Press Inc., New York.

    Google Scholar 

  • Pangborn, M.C. 1951. A simplified purification of lecithin.J. Biol. Chem. 188:471.

    PubMed  Google Scholar 

  • Seufert, W.D. 1965. Induced permeability changes in reconstituted cell membrane structure.Nature 207:174.

    PubMed  Google Scholar 

  • Smith, R.F., Briggs, D.R. 1950. Electrophoretic analysis of protein interaction. I. The interaction of bovine serum albumin and methyl orange.J. Phys. Chem. 54:33.

    Google Scholar 

  • Strickland, E.G., Goucher, C.R. 1964. Effects of ferric nucleotides on mitochondrial respiration.Arch. Biochem. Biophys. 108:72.

    PubMed  Google Scholar 

  • Tien, W.T., Diana, A.L. 1968 Bimolecular lipid membranes.J. Phys. Chem. Lipids 2:55.

    Google Scholar 

  • Turner, R.C., Miles, K.E. 1957. The ultraviolet absorption spectra of the ferric ion and its first hydrolysis products in aqueous solutions.Canad. J. Chem. 35:1002.

    Google Scholar 

  • Van Zutphen, M., Van Deenen, L.L., Kinsky, S.C. 1966. The action of polyene antibiotics on bilayer lipid membranes.Biochem. Biophys. Res. Commun. 22:393.

    Google Scholar 

  • Weiser, H.B. 1935 Inorganic Colloid Chemistry. Vol. II, p. 51. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Weiser, H.B. 1939. Colloid Chemistry. John Wiley & Sons, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, R.C., Thompson, T.E. Properties of lipid bilayer membranes separating two aqueous phases: The effects of Fe+3 on electrical properties. J. Membrain Biol. 7, 54–87 (1972). https://doi.org/10.1007/BF01867909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867909

Keywords

Navigation