Skip to main content
Log in

Cellular mechanism of HCO 3 and Cl transport in insect salt gland

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Active HCO t-3 secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 1∶1 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga lCl −. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated\(a_{HCO_3 }^c \) was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on\(J_{net}^{CO_2 } \) and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammann, D., Lanter, F., Steiner, R.A., Schulthess, P., Shijo, Y., Simon, W. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies.Anal. Chem. 53:2267–2269

    Google Scholar 

  • Anstee, J.H., Bowler, K. 1979. Ouabain-sensitivity of insect epithelial tissue.Comp. Biochem. Physiol. 62A:763–769

    Google Scholar 

  • Baumgarten, C.M., Fozzard, H.A. 1981. Intracellular chloride activity in mammalian ventricular muscle.Am. J. Physiol. 241:C121-C129

    Google Scholar 

  • Biagi, B., Kubota, T., Sohtell, M., Giebisch, G. 1981. Intracellular potentials in rabbit proximal tubules perfusedin vitro.Am. J. Physiol. 240:F200-F210

    Google Scholar 

  • Boron, W.F. 1983. Transport of H and of ionic weak acids and bases.J. Membrane Biol. 72:1–16

    Google Scholar 

  • Bradley, T.J., Phillips, J.E. 1975. The secretion of hyperosmotic fluid by the rectum of a saline-water mosquito larva.Aedes taeniorhynchus.J. Exp. Biol. 63:331–342

    PubMed  Google Scholar 

  • Brown, H.M., Saunders, J.H. 1977. Cation and anion sequences in dark-adaptedBalanus photoreceptors.J. Gen. Physiol. 70:531–543

    PubMed  Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physiochemical properties of a liquid ion exchanger microelectrode and its application to biological fluid.Jpn. J. Physiol. 26:631–650

    PubMed  Google Scholar 

  • Kielland, J. 1937. Individual activity coefficients of ions in aqueous solutions.J. Am. Chem. Soc. 59:1675–1678

    Google Scholar 

  • Lewis, S.A. 1971. Charge properties and ion selectivity of the rectal intima of the desert locust. M.Sc. Thesis, University of British Columbia, Vancouver, B.C.

    Google Scholar 

  • Malnic, G., Costasilva, V.L., Campiglia, S.S., Mello Aires, M. de, Giebisch, G. 1980. Tubular permeability to buffer components as a determinant of net H+ ion fluxes.In: “Current Topics in Membranes and Transport. Vol. 13: Cellular Mechanisms of Renal Tubular Ion Transport. pp. 257–264. E.L. Boulpaep, editor. Academic Press, New York

    Google Scholar 

  • McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    PubMed  Google Scholar 

  • Meredith, J., Phillips, J.E. 1973. Rectal ultrastructure in salt- and freshwater mosquito larvae in relation to physiological state.Z. Zellforsch. 138:1–22

    PubMed  Google Scholar 

  • Ogden, T.E., Citron, M.C., Pierantoni, R. 1978. The jet stream microelectrode beveler: An inexpensive way to bevel ultrafine glass micropipettes.Science 200:469–470

    Google Scholar 

  • Phillips, J. 1981. Comparative physiology of insect renal function.Am. J. Physiol. 241:R241-R257

    Google Scholar 

  • Phillips, J.E., Bradley, T.J., Maddrell, S.H.P. 1978. Mechanisms of ionic and osmotic regulation in saline-water mosquito larva.In: Comparative Physiology—Water, Ions and Fluid Mechanics. K. Schmidt-Nielsen, C. Bollis and S.H.P. Maddrell, editors. pp. 151–171. Cambridge University Press, Cambridge

    Google Scholar 

  • Phillips, J.E., Dockrill, A.A. 1968. Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria).J. Exp. Biol. 48:521–532

    PubMed  Google Scholar 

  • Phillips, J.E., Maddrell, S.H.P. 1974. Active transport of magnesium by the Malpighian tubules of the larvae of the mosquitoAedes campestris.J. Exp. Biol. 61:761–771

    PubMed  Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1965. Electrolyte Solutions. 3rd ed. Buttersworth, London

    Google Scholar 

  • Schulz, I. 1981. Electrolyte and fluid secretion in the exocrine pancreas.In: Physiology of the Gastrointestinal Tract. L.R. Johnson, editor. Vol. 2, pp. 795–819. Raven, New York

    Google Scholar 

  • Scudder, G.G.E. 1969. The fauna of saline lakes on the Fraser Plateau in British Columbia.Verh. Int. Ver. Limnol. 17:430–439

    Google Scholar 

  • Spring, K.R., Kumura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Article  Google Scholar 

  • Steels, P.S., Boulpaep, E.L. 1976. Effect of pH on ionic conductances of the proximal tubule epithelium ofNecturus and the role of buffer permeability.Fed. Proc. 35:465

    Google Scholar 

  • Strange, K. 1983. Cellular mechanism of bicarbonate regulation and excretion in an insect inhabiting extreme alkalinity. Ph. D. Thesis, University of British Columbia. Vancouver, B.C.

    Google Scholar 

  • Strange, K., Phillips, J.E. 1984. Mechanisms of total CO2 transport in the microperfused rectal salt gland ofAedes dorsalis. I. Ionic requirements of total CO2 secretion.Am. J. Physiol. 246:R727-R734

    Google Scholar 

  • Strange, K., Phillips, J.E., Quamme, G.A. 1982. Active HCO 3 secretion in the rectal salt gland of a mosquito larva inhabiting NaHCO3−CO3 lakes.J. Exp. Biol. 101:171–186

    Google Scholar 

  • Strange, K., Phillips, J.E., Quamme, G.A. 1984. Mechanisms of total CO2 transport in the microperfused rectal salt gland ofAedes dorsalis. II. Site of Cl/HCO 3 exchange and function of anterior and posterior salt gland segments.Am. J. Physiol. 246:R735-R740

    Google Scholar 

  • Ullrich, K.J., Radtke, H.W., Rumrich, G. 1971. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney.Pfluegers Arch. 330:149–161

    Google Scholar 

  • Ullrich, K.J., Rumrich, G., Baumann, K. 1975. Renal proximal tubular buffer-(glycodiazine) transport. Inhomogenicity of local transport rate, dependence on sodium, effect of inhibitors and chronic adaptation.Pfluegers Arch. 357:149–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strange, K., Phillips, J.E. Cellular mechanism of HCO 3 and Cl transport in insect salt gland. J. Membrain Biol. 83, 25–37 (1985). https://doi.org/10.1007/BF01868735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868735

Key Words

Navigation