Skip to main content
Log in

Ion transport by primary cultures of canine tracheal epithelium: Methodology, morphology, and electrophysiology

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Canine tracheal epithelial cells were isolated by enzymatic and mechanical dispersion and cultured on permeable supports. The cells formed confluent monolayers and retained most of the morphologic characteristics of the intact epithelium, including apical microvilli, apical tight junctions, and a moderately interdigitated lateral intercellular space. The cells also retained the functional properties of the epithelium. The monolayer responded to addition of isoproterenol with the characteristic changes in cellular electrical properties expected for stimulation of Cl secretion: isoproterenol increased transepithelial voltage, depolarized apical membrane voltage, and decreased both transepithelial resistance and the ratio of apical-to-basolateral membrane resistance. Examination of the cellular response to ion substitutions and inhibitors of Cl secretion indicate that the cultured monolayers retain the same cellular mechanisms of ion transport as the intact epithelium. Thus, primary cultures of tracheal epithelium may provide a useful preparation for future studies of the mechanism and regulation of Cl secretion by airway epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bazzaz, F., Yadava, V.P., Westenfelder, C. 1981. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins.Am. J. Physiol. 240:F101-F105

    PubMed  Google Scholar 

  • Brown, C.D.A., Simmons, N.L. 1981. Catecholamine-stimulation of Cl secretion in MDCK cell epithelium.Biochim. Biophys. Acta 649:427–435

    PubMed  Google Scholar 

  • Coleman, D.L., Tuet, I.K., Widdicombe, J.H. 1984. Electrical properties of dog tracheal epithelial cells grown in monolayer culture.Am. J. Physiol. 246:C355-C359

    PubMed  Google Scholar 

  • Dharmsathaphorn, K., McRoberts, J.A., Mandel, K.G., Tisdale, L.D., Masui, H. 1984. A human colonic tumor cell line that maintains vectorial electrolyte transport.Am. J. Physiol. 246:G204-G208

    PubMed  Google Scholar 

  • Diamond, J.M. 1982. Transcellular cross-talk between epithelial cell membranes.Nature (London) 300:683–685

    Google Scholar 

  • Emerman, J.T., Pitelka, D.R. 1977. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes.In Vitro 13:316–328

    PubMed  Google Scholar 

  • Frasca, J.M., Auerbach, O., Parks, V.R., Jamieson, J.D. 1968. Electron microscopic observations of the bronchial epithelium of dogs. I. Control dogs.Exp. Mol. Pathol. 9:363–379

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    PubMed  Google Scholar 

  • Greger, R., Schlatter, E. 1984. Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias) I. Experiments in isolatedin vitro perfused rectal gland tubules.Pfluegers Arch. 402:63–75

    Google Scholar 

  • Handler, J.S., Perkins, F.M., Johnson, J.P., 1980. Studies of renal cell function using cell culture techniques.Am. J. Physiol. 238:F1-F9

    PubMed  Google Scholar 

  • Marin, M.L., Lane, B.P., Gordon, R.E., Drummon, E. 1979. Ultrastructure of rat tracheal epithelium.Lung 156:223–236

    PubMed  Google Scholar 

  • Nagel, W., Reinach, P. 1980. Mechanism of stimulation by epinephrine of active transepithelial Cl transport in isolated frog cornea.J. Membrane Biol. 56:73–79

    Google Scholar 

  • Rhodin, J.A.G. 1966. Ultrastructure and function of the human tracheal mucosa.Am. Rev. Respir. Dis. 93:1–15

    Google Scholar 

  • Sakhrani, L.M., Fine, L.G. 1983. Renal tubular cells in culture.Mineral Electrolyte Metab. 9:276–281

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    PubMed  Google Scholar 

  • Shorofsky, S.R., Field, M., Fozzard, H.A. 1983. Electrophysiology of Cl secretion in canine trachea.J. Membrane Biol. 72:105–115

    Google Scholar 

  • Shorofsky, S.R., Field, M., Fozzard, H.A. 1984. Mechanism of Cl secretion in canine trachea: Changes in intracellular chloride activity with secretion.J. Membrane Biol. 81:1–8

    Google Scholar 

  • Smith, P.L., Frizzell, R.A. 1984. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate.J. Membrane Biol. 77:187–199

    Google Scholar 

  • Smith, P.L., Welsh, M.J., Stoff, J.S., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levels.J. Membrane Biol. 70:217–226

    Google Scholar 

  • Sugahara, K. Caldwell, J.H., Mason, R.J. 1984. Electrical currents flow out of domes formed by cultured epithelial cells.J. Cell Biol. 99:1541–1546

    PubMed  Google Scholar 

  • Tanner, C., Frambach, D.A., Misfeldt, D.S. 1983. Transepithelial transport in cell culture.Biophys. J. 43:183–190

    PubMed  Google Scholar 

  • Valentich, J.D. 1981. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule.In: Hormonal Regulation of Epithelial Transport of Ions and Water. W.N. Scott and D.B.P. Goodman, editors. Vol. 372, pp. 384–404.Ann. N.Y. Acad. Sci., New York

    Google Scholar 

  • Welsh, M.J. 1983a. Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium.Am. J. Physiol. 244:F639-F645

    PubMed  Google Scholar 

  • Welsh, M.J. 1983b. Evidence for a basolateral membrane potassium conductance in canine tracheal epithelium.Am. J. Physiol. 244:C377-C384

    PubMed  Google Scholar 

  • Welsh, M.J. 1983c. Inhibition of chloride secretion by furosemide in canine tracheal epithelium.J. Membrane Biol. 71:219–226

    Google Scholar 

  • Welsh, M.J., 1983d. Intracellular chloride activities in canine tracheal epithelium: Direct evidence for sodium-coupled intra-cellular chloride accumulation in a chloride-secreting epithelium.J. Clin. Invest. 71:1392–1401

    PubMed  Google Scholar 

  • Welsh, M.J., Smith, P.L., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile.J. Membrane Biol. 70:227–238

    Google Scholar 

  • Welsh, M.J., Smith, P.L., Frizzell, R.A. 1983. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces.J. Membrane Biol. 71:209–218

    Google Scholar 

  • Widdicombe, J.H., Nathanson, I.T., Highland, E. 1983. Effects of “loop” diuretics on ion transport by dog tracheal epithelium.Am. J. Physiol. 245:C388-C396

    PubMed  Google Scholar 

  • Yoneda, K., 1976. Mucous blanket of rat bronchus.Am. Rev. Respir. Dis. 114:837–842

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, M.J. Ion transport by primary cultures of canine tracheal epithelium: Methodology, morphology, and electrophysiology. J. Membrain Biol. 88, 149–163 (1985). https://doi.org/10.1007/BF01868429

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868429

Key Words

Navigation