Skip to main content
Log in

Demonstration and characterization of Ca2+ channel in tonoplast-free cells ofNitellopsis obtusa

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The presence of a Ca2+ channel in the plasmalemma of tonoplast-freeNitellopsis obtusa cells was demonstrated and its characteristics were studied using current- and voltage-clamp techniques. A long-lasting inward membrane current (I m ), recorded using a step voltage clamp, consisted of a single component without time-dependent inactivation. Increasing either [Ca2+] o or [Cl] o 1) enhanced the maximum amplitude of inwardI m ((I m ) p ) and 2) shifted the peak voltage ((V m ) p ) at(I m ) p to more positive values under ramp-shaped voltage clamping and 3) depolarized the peak value of action potentials. This behavior is consistent with predictions based on the Nernst equation for Ca2+ but not for Cl. DIDS (4,4′-diisothiocyano-2,2′-disulfonic acid stilbene) did not suppress(I m ) p in tonoplast-free cells, in contrast with its effect on normal cells. La3+ and nifedipine blocked(I m ) p irreversibly. On the other hand, Ca2+ channel agonist, BAY K 8644 irreversibly enhanced(I m ) p . Both Sr2+ influx and K+ efflux increased upon excitation. The charge carried by Sr2+ influx was compensated for by K+ efflux. It is concluded that only the Ca2+ channel is activated during plasmalemma excitation in tonoplast-free cells. In terms of the magnitude of(I m ) p , Sr2+ could replace Ca2+, but Mn2+, Mg2+ and Ba2+ could not. External pH affected(I m ) p and the membrane conductance (g m ) at(I m ) p ((g m ) p ). Increasing the external ionic strength caused increases in both(I m ) p and(g m ) p , and shifted(V m ) p to positive values. At the same time, Sr2+ influx increased. Thus Ca2+ channel activation seems to be enhanced by increasing external ionic strength. The possible involvement of surface potential is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai, K., Kishimoto, U. 1975. Effects of sodium, potassium and chloride ions on the membrane potential ofValonia aegagropila.Plant Cell Physiol. 16:93–100

    Google Scholar 

  • Beilby, M.J. 1984a. Current-voltage characteristics of the proton pump atChara plasmalemma. I. pH dependence.J. Membrane Biol. 81:113–125

    Google Scholar 

  • Beilby, M.J. 1984b. Calcium and plant action potentials.Plant Cell Environment 7:415–421

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979. The action potential inChara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma.Aust. J. Plant Physiol. 6:323–335

    Google Scholar 

  • Caldwell, J.H., Brunt, J. van, Harold, F.M. 1986. Calcium-dependent anion channel in the water moldBlastocladiella emersonii.J. Membrane Biol. 89:85–97

    Google Scholar 

  • Findlay, G.P. 1961. Voltage-clamp experiments withNitella.Nature (London) 191:812–814

    Google Scholar 

  • Findlay, G.P. 1962. Calcium ions and the action potential inNitella.Aust. J. Biol. Sci. 15:69–82

    Google Scholar 

  • Findlay, G.P. 1964. Ionic relations of cells ofChara australis. VIII. Membrane currents during a voltage clamp.Aust. J. Biol. Sci. 17:388–399

    Google Scholar 

  • Findlay, G.P. 1970. Membrane electrical behaviour inNitellopsis obtusa.Aust. J. Biol. Sci. 23:1033–1045

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964a. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964b. Ionic relations ofChara australis. IX. Analysis of transient membrane currents.Aust. J. Biol. Sci. 17:400–411

    Google Scholar 

  • Fujii, S., Shimmen, T., Tazawa, M. 1979. Effect of intracellular pH on the light-induced potential change and electrogenic activity in tonoplast-free cells ofChara australis.Plant Cell Physiol. 20:1315–1328

    Google Scholar 

  • Gaffey, C.T., Mullins, L.J. 1958. Ion fluxes during the action potential inChara.J. Physiol. (London) 144:505–527

    Google Scholar 

  • Hagiwara, S., Byerly, L. 1981. Calcium channel.Annu. Rev. Neurosci. 4:69–125

    PubMed  Google Scholar 

  • Hayama, T., Shimmen, T., Tazawa, M. 1979. Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation inCharaceae internodal cells.Protoplasma 99:305–321

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:449–472

    Google Scholar 

  • Hodick, D., Sievers, A. 1986. The influence of Ca2+ on the action potential in mesophyll cells ofDionaea muscipulla Ellis.Protoplasma 133:83–84

    Google Scholar 

  • Hope, A. B. 1961a. The action potential in cells ofChara.Nature (London) 191:811–812

    Google Scholar 

  • Hope, A.B. 1961b. Ionic relations of cells ofChara australis.Aust. J. Biol. Sci. 14:312–321

    Google Scholar 

  • Hope, A.B., Findlay, G.P. 1964. The action potential inChara.Plant Cell Physiol. 5:377–379

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Cells. Cambridge University Press, London

    Google Scholar 

  • Iijima, T., Ciani, S., Hagiwara, S. 1986. Effects of the external pH on Ca channels: Experimental studies and theoretical considerations using a two-ion model.Proc. Natl. Acad. Sci. USA 83:654–658

    PubMed  Google Scholar 

  • Iijima, T., Sibaoka, T. 1983. Membrane potentials in excitable cells ofAldrovanda vesiculosa trap-lobes.Plant Cell Physiol. 26:1–13

    Google Scholar 

  • Katsuhara, M., Tazawa, M. 1986. Salt tolerance inNitellopsis obtusa.Protoplasma 135:155–161

    Google Scholar 

  • Keifer, D.W., Spanswick, R.M. 1978. Activity of the electrogenic pump inChara corallina as infered from measurements of the membrane potential, conductance, and potassium permeability.Plant Physiol. 62:653–661

    Google Scholar 

  • Kikuyama, M., Oda, K., Shimmen, T., Hayama, T., Tazawa, M. 1984. Potassium and chloride effluxes during excitation of Characeae cells.Plant Cell Physiol. 25:965–974

    Google Scholar 

  • Kikuyama, M., Tazawa, M. 1983. Transient increase of intracellular Ca2+ during excitation of tonoplast-freeChara cells.Protoplasma 117:62–67

    Google Scholar 

  • Kishimoto, U. 1964. Current voltage relations inNitella.J. Physiol. (London) 14:515–527

    Google Scholar 

  • Kishimoto, U., Takeuchi, Y., Ohkawa, T., Kami-ike, N. 1985. A kinetic analysis of the electrogenic pump ofChara corallina: III. Pump activity during action potential.J. Membrane Biol. 86:27–36

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Google Scholar 

  • Mimura, T., Kirino, Y. 1984. Changes in cytoplasmic pH measured by31P-NMR in cells ofNitellopsis obtusa.Plant Cell Physiol. 25:813–820

    Google Scholar 

  • Mimura, T., Tazawa, M. 1983. Effects of intracellular Ca2+ on membrane potential and membrane resistance in tonoplast-free cells ofNitellopsis obtusa.Protoplasma 118:49–55

    Google Scholar 

  • Oda, K. 1976. Simultaneous recording of potassium and chloride effluxes during an action potential inChara corallina.Plant Cell Physiol. 17:1085–1088

    Google Scholar 

  • Ohkawa, T., Kishimoto, U. 1977. Breakdown phenomena in theChara membrane.Plant Cell Physiol. 18:67–80

    Google Scholar 

  • Okazaki, Y., Tazawa, M., 1986a. Involvement of calcium ion in turgor regulation upon hypotonic treatment inLamprothamnium succinctum.Plant Cell Environment 9:185–190

    Google Scholar 

  • Okazaki, Y., Tazawa, M. 1986b. Effect of calcium ion on cytoplasmic streaming during turgor regulation in a brackish water charophytaLamprothamnium succintum.Plant Cell Environment 9:491–494

    Google Scholar 

  • Pickard, B.G. 1973. Action potentials in higher plants.Bot. Rev. 39:172–201

    Google Scholar 

  • Shiina, T., Tazawa, M. 1986. Regulation of membrane excitation by protein phosphorylation inNitellopsis obtusa.Protoplasma 134:60–61

    Google Scholar 

  • Shimmen, T., Kikuyama, M., Tazawa, M. 1976. Demonstration of two stable potential states of plasmalemma ofChara without tonoplast.J. Membrane Biol. 30:249–270

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1980. Intracellular chloride and potassium ions in relation to excitability ofChara membrane.J. Membrane Biol. 55:223–232

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1982. Effects of intracellular vanadate on electrogenesis, excitability and cytoplasmic streaming inNitellopsis obtusa.Plant Cell Physiol. 23:669–677

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1983. Activation of K+-channel in membrane excitation ofNitella axilliformis.Plant Cell Physiol. 24:1511–1524

    Google Scholar 

  • Sibaoka, T. 1969. Physiology of rapid movements in higher plants.Annu. Rev. Plant Physiol. 20:165–184

    Google Scholar 

  • Tasaki, I. 1968. Nerve Excitation. Charles C. Thomas, Springfield, Illinois

    Google Scholar 

  • Tazawa, M. 1972. Membrane characteristics as revealed by water and ionic relations of algal cells.Protoplasma 75:427–460

    PubMed  Google Scholar 

  • Tazawa, M., Kikuyama, M., Shimmen, T. 1976. Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast.Cell Struct. Function 1:165–176

    Google Scholar 

  • Tsutsui, I., Ohkawa, T., Nagai, R., Kishimoto, U. 1986. Inhibition of Cl channel activation inChara corallina membrane by lanthanium ion.Plant Cell Physiol. 27:1197–1200

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986. Inward membrane current inChara inflata: II. Effects of pH, Cl-channel blockers and NH 4+ , and significance for the hyperpolarized state.J. Membrane Biol. 89:153–161

    Google Scholar 

  • Williamson, R.E. 1975. Cytoplasmic streaming inChara: A Cell model activated by ATP and inhibited by cytochalasin B.J. Cell Sci. 17:655–668

    PubMed  Google Scholar 

  • Williamson, R.E., Ashley, C.C. 1982. Free Ca2+ and cytoplasmic streaming in the algaChara.Nature (London) 296:647–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiina, T., Tazawa, M. Demonstration and characterization of Ca2+ channel in tonoplast-free cells ofNitellopsis obtusa . J. Membrain Biol. 96, 263–276 (1987). https://doi.org/10.1007/BF01869308

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869308

Key Words

Navigation